ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Overview

ManimML

GitHub license GitHub tag Pypi Downloads Follow Twitter

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library. We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine learning concepts. Additionally, we want to provide a set of abstractions which allow users to focus on explanations instead of software engineering.

Table of Contents

  1. Getting Started
  2. Examples

Getting Started

First you will want to install manim.

Then install the package form source or pip install manim_ml

Then you can run the following to generate the example videos from python scripts.

manim -pqh src/vae.py VAEScene

Examples

Checkout the examples directory for some example videos with source code.

Neural Networks

This is a visualization of a Variational Autoencoder made using ManimML. It has a Pytorch style list of layers that can be composed in arbitrary order. The following video is made with the code from below.

class VariationalAutoencoderScene(Scene):

    def construct(self):
        embedding_layer = EmbeddingLayer(dist_theme="ellipse").scale(2)
        
        image = Image.open('images/image.jpeg')
        numpy_image = np.asarray(image)
        # Make nn
        neural_network = NeuralNetwork([
            ImageLayer(numpy_image, height=1.4),
            FeedForwardLayer(5),
            FeedForwardLayer(3),
            embedding_layer,
            FeedForwardLayer(3),
            FeedForwardLayer(5),
            ImageLayer(numpy_image, height=1.4),
        ], layer_spacing=0.1)

        neural_network.scale(1.3)

        self.play(Create(neural_network))
        self.play(neural_network.make_forward_pass_animation(run_time=15))

Generative Adversarial Network

This is a visualization of a Generative Adversarial Network made using ManimML.

VAE Disentanglement

This is a visualization of disentanglement with a Variational Autoencoder

You might also like...
Create animations for the optimization trajectory of neural nets
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Testing the Facial Emotion Recognition (FER) algorithm on animations
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

A collection of 100 Deep Learning images and visualizations
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

Comments
  • PyPi out of date

    PyPi out of date

    When I pip install manim_ml it doesn't include any of the examples in the README. It also doesn't have many of the modules you'd expect. For example, manim_ml.neural_networks doesn't exist. As a workaround I've manually installed dependencies and added a clone of the latest commit to my python path. However, it would be nice to be able to install it via pip.

    opened by ElPiloto 6
  • [BUG] update some of the examples

    [BUG] update some of the examples

    I updated most of the examples, in particular: disentanglement cnn vae.

    interpolation still doesn't work, and gan has some positioning issues but at least it renders.

    Thanks for the cool library btw! l think having working/updated examples would increase it's visibility and usefulness :)

    opened by YannDubs 1
  • NN scaling issue with Convolutional3DLayer

    NN scaling issue with Convolutional3DLayer

    At some point there was code commited changing the behaviour of the net when scaling it. If I use the code in the pip package everything works fine (0.0.11 seems to contain only code prior to the 7th of may). https://user-images.githubusercontent.com/54776552/198372984-f704cceb-8582-4bf9-bc23-c15ebb836b34.mp4

    However I'm forking the repo (with the latest commit from august) because I need to change some internal code and noticed this problem.

    https://user-images.githubusercontent.com/54776552/198373792-fd672ec7-708e-4ebe-b353-e291c8a591dd.mp4

    Maybe someone can pinpoint the exact commit which causes this behaviour?

    Code used:

    class Test(Scene):
    	def construct(self):
    		# Make the Layer object
    		l1 = Convolutional3DLayer(4, 2, 2)
    		l2 = Convolutional3DLayer(5, 1, 1)
    		l3 = Convolutional3DLayer(2, 3, 3)
    		layers = [l1, l2, l3]
    		nn = NeuralNetwork(layers)
    		nn.scale(2)
    		nn.move_to(ORIGIN)
    		# Make Animation
    		self.add(nn)
    		#self.play(Create(nn))
    		forward_propagation_animation = nn.make_forward_pass_animation(run_time=5, passing_flash=True)
    
    		self.play(forward_propagation_animation)
    
    opened by wand555 1
Releases(v0.0.1)
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023