Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Related tags

Deep LearningSimiGrad
Overview

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement"

This repo contains both our SimiGrad framework (integrated with DeepSpeed) and all training codes used to generate the results in the paper.

Installation

Please use ./DeepSpeed/install.sh to install our SimiGrad framework. For detailed installation options please see ./DeepSpeed/install.sh . It is recommended that you use a virtual environment to install SimiGrad.

Usage

To use SimiGrad, simply add an additional parameter adaptive_batch_params when initializing DeepSpeed. For example,

model, optimizer, _, _ = deepspeed.initialize(
        args=...,
        model=...,
        model_parameters=...,
        adaptive_batch_params={
            "enable_adjust": args.similarity_target, # bool, set to `True` to use adaptive batch size and `False` for fixed batch size
            "verbose": True, # bool, set to `True` to print details of batch size adjustment
            "similarity_target":args.similarity_target, # float, -1.0~1.0, the similarity target that controls how aggressive the batch size adjustment is.
            "batch_size_lower_bound":args.batchsize_lower_bound, # int, optional, the lower bound of batch size. Recommended only if you have a well-tuned warmup learning rate scheduling.
            "batch_size_upper_bound":args.batchsize_upper_bound, # int, optional, the upper bound of batch size.
            "max_micro_batch_size":args.max_micro_batch_size, # int, optional, the upper bound of micro batch size to prevent out-of-memory error. If unspecified, the initial micro batch size will be used as the max_micro_batch_size.})

Please refer to our code (e.g. DeepSpeedExamples/pytorch-cifar/main.py) for details such as how to read the metrics from the framework.

For usage of DeepSpeed, please refer to their website https://www.deepspeed.ai/

Reproduce Paper's Results

The parameters we used to get the claimed results are included in the paper.

BERT Large Pretrain

All scripts can be found in DeepSpeedExamples/bert_pretrain/. Please use the script ds_train_bert_bsz64k_seq128.sh for BERT Large pretrain with sequence length 128 (epoch 1-150). You need to specify the parameters like similarity_target and also the location of the WikiandBookCorpus dataset in the script.

After the sequence length 128 pretrain, use ds_train_bert_bsz32k_seq512.sh to finish the sequence length 512 part of pretrain (epoch 151-170). You need to specify the checkpoint from sequence length 128 pretrain for the sequence length 512 to start with. Then the BERT Large model is ready for downstream tasks.

SQuAD Score from BERT Large Pretrain

After the BERT pretrain, use DeepSpeedExamples/BingBertSquad/run_squad_deepspeed.sh to get the SQuAD 1.1 score. You need to specify the checkpoint from sequence length 512 pretrain and the location of SQuAD 1.1 dataset.

ResNet18 on CIFAR10

All scripts can be found in DeepSpeedExamples/pytorch-cifar/. Use the script run.sh to train ResNet18 with specific parameters. Use the grid_search.py and baseline_grid_search.py to get the Pareto results of test acc vs. batch size in the paper.

ResNet50 on ImageNet

All scripts can be found in DeepSpeedExamples/imagenet_deepspeed/. Use the script run_with2kmin.sh to train ResNet50 with spcific parameters.

Future of SimiGrad

SimiGrad will be officially integrated as part of DeepSpeed soon!

Owner
Heyang Qin
Heyang Qin
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021