Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Related tags

Deep LearningSimiGrad
Overview

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement"

This repo contains both our SimiGrad framework (integrated with DeepSpeed) and all training codes used to generate the results in the paper.

Installation

Please use ./DeepSpeed/install.sh to install our SimiGrad framework. For detailed installation options please see ./DeepSpeed/install.sh . It is recommended that you use a virtual environment to install SimiGrad.

Usage

To use SimiGrad, simply add an additional parameter adaptive_batch_params when initializing DeepSpeed. For example,

model, optimizer, _, _ = deepspeed.initialize(
        args=...,
        model=...,
        model_parameters=...,
        adaptive_batch_params={
            "enable_adjust": args.similarity_target, # bool, set to `True` to use adaptive batch size and `False` for fixed batch size
            "verbose": True, # bool, set to `True` to print details of batch size adjustment
            "similarity_target":args.similarity_target, # float, -1.0~1.0, the similarity target that controls how aggressive the batch size adjustment is.
            "batch_size_lower_bound":args.batchsize_lower_bound, # int, optional, the lower bound of batch size. Recommended only if you have a well-tuned warmup learning rate scheduling.
            "batch_size_upper_bound":args.batchsize_upper_bound, # int, optional, the upper bound of batch size.
            "max_micro_batch_size":args.max_micro_batch_size, # int, optional, the upper bound of micro batch size to prevent out-of-memory error. If unspecified, the initial micro batch size will be used as the max_micro_batch_size.})

Please refer to our code (e.g. DeepSpeedExamples/pytorch-cifar/main.py) for details such as how to read the metrics from the framework.

For usage of DeepSpeed, please refer to their website https://www.deepspeed.ai/

Reproduce Paper's Results

The parameters we used to get the claimed results are included in the paper.

BERT Large Pretrain

All scripts can be found in DeepSpeedExamples/bert_pretrain/. Please use the script ds_train_bert_bsz64k_seq128.sh for BERT Large pretrain with sequence length 128 (epoch 1-150). You need to specify the parameters like similarity_target and also the location of the WikiandBookCorpus dataset in the script.

After the sequence length 128 pretrain, use ds_train_bert_bsz32k_seq512.sh to finish the sequence length 512 part of pretrain (epoch 151-170). You need to specify the checkpoint from sequence length 128 pretrain for the sequence length 512 to start with. Then the BERT Large model is ready for downstream tasks.

SQuAD Score from BERT Large Pretrain

After the BERT pretrain, use DeepSpeedExamples/BingBertSquad/run_squad_deepspeed.sh to get the SQuAD 1.1 score. You need to specify the checkpoint from sequence length 512 pretrain and the location of SQuAD 1.1 dataset.

ResNet18 on CIFAR10

All scripts can be found in DeepSpeedExamples/pytorch-cifar/. Use the script run.sh to train ResNet18 with specific parameters. Use the grid_search.py and baseline_grid_search.py to get the Pareto results of test acc vs. batch size in the paper.

ResNet50 on ImageNet

All scripts can be found in DeepSpeedExamples/imagenet_deepspeed/. Use the script run_with2kmin.sh to train ResNet50 with spcific parameters.

Future of SimiGrad

SimiGrad will be officially integrated as part of DeepSpeed soon!

Owner
Heyang Qin
Heyang Qin
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022