Meli Data Challenge 2021 - First Place Solution

Overview

Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021, first place in both public and private leaderboards.

The Model

My final model is an ensemble combining recurrent neural networks and XGBoost regressors. Neural networks are trained to predict the stock days probability distribution using the RPS as loss function. XGBoost regressors are trained to predict stock days using different objectives, here the intuition behind this:

  • MSE loss: the regressor trained with this loss will output values close to the expected mean.
  • Pseudo-Huber loss: an alternative for the MAE loss, this regressor outputs values close to the expected median.
  • Quantile loss: 11 regressors are trained using a quantile loss with alpha 0, 0.1, 0.2, ..., 1. This helps to build the final probability distribution.

The outputs of all these level-0 models are concatenated to train a feedforward neural network with the RPS as loss function.

diagram

The last 30 days of the train dataset are used to generate the labels and the target stock input. The remaining 29 days are used to generate the time series input.

The train/validation split is done at a sku level:

  • For level-0 models: 450000 sku's are used for training and the rest for validation.
  • For the level-1 model: the sku's used for training level-0 models are removed from the dataset and the remaining sku's are split again into train/validation.

Once all models are trained, the last 29 days of the train dataset and the provided target stock values are used as input to generate the submission.

Disclaimer: the entire solution lacks some fine tuning since I came up with this little ensemble monster towards the end of the competition. I didn't have the time to fine-tune each model (there are technically 16 models to tune if we consider each quantile regressor as an independent model).

How to run the solution

Requirements

  • TensorFlow v2.
  • Pandas.
  • Numpy.
  • Scikit-learn.

CUDA drivers and a CUDA-compatible GPU is required (I didn't have the time to test this on a CPU).

Some scripts require up to 30GB of RAM (again, I didn't have the time to implement a more memory-efficient solution).

The solution was tested on Ubuntu 20.04 with Python 3.8.10.

Downloading the dataset

Download the dataset files from https://ml-challenge.mercadolibre.com/downloads and put them into the dataset/ directory.

On linux, you can do that by running:

cd dataset && wget \
https://meli-data-challenge.s3.amazonaws.com/2021/test_data.csv \
https://meli-data-challenge.s3.amazonaws.com/2021/train_data.parquet \
https://meli-data-challenge.s3.amazonaws.com/2021/items_static_metadata_full.jl

Running the scripts

All-in-one script

A convenient script to run the entire solution is provided:

cd src
./run-solution.sh

Note: the entire process may take more than 3 hours to run.

Step by step

If you find trouble running the al-in-one script, you can run the solution step by step following the instructions bellow:

cd into the src directory:

cd src

Extract time series from the dataset:

python3 ./preprocessing/extract-time-series.py

Generate a supervised learning dataset:

python3 ./preprocessing/generate-sl-dataset.py

Train all level-0 models:

python3 ./train-all.py

Train the level-1 ensemble:

python3 ./train-ensemble.py

Generate the submission file and gzip it:

python3 ./generate-submission.py && gzip ./submission.csv

Utility scripts

The training_scripts directory contains some scripts to train each model separately, example usage:

python3 ./training_scripts/train-lstm.py
Owner
Matias Moreyra
Electronics Engineer, Software Developer.
Matias Moreyra
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022