Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

Overview

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization

This is the official implementaion of paper TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization

This repository contains Pytorch training code, evaluation code, pretrained models and jupyter notebook for more visualization.

Illustration

Based on Deit, TS-CAM couples attention maps from visual image transformer with semantic-aware maps to obtain accurate localization maps (Token Semantic Coupled Attention Map, ts-cam).

ts-cam

Model Zoo

We provide pretrained TS-CAM models trained on CUB-200-2011 and ImageNet_ILSVRC2012 datasets.

Dataset [email protected] [email protected] Loc.Gt-Known [email protected] [email protected] Baidu Drive Google Drive
CUB-200-2011 71.3 83.8 87.7 80.3 94.8 model model
ILSVRC2012 53.4 64.3 67.6 74.3 92.1 model model

Note: the Extrate Code for Baidu Drive is as follows:

Usage

First clone the repository locally:

git clone https://github.com/vasgaowei/TS-CAM.git

Then install Pytorch 1.7.0+ and torchvision 0.8.1+ and pytorch-image-models 0.3.2:


conda create -n pytorch1.7 python=3.6
conda activate pytorc1.7
conda install anaconda
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.2 -c pytorch
pip install timm==0.3.2

Data preparation

CUB-200-2011 dataset

Please download and extrate CUB-200-2011 dataset.

The directory structure is the following:

TS-CAM/
  data/
    CUB-200-2011/
      attributes/
      images/
      parts/
      bounding_boxes.txt
      classes.txt
      image_class_labels.txt
      images.txt
      image_sizes.txt
      README
      train_test_split.txt

ImageNet1k

Download ILSVRC2012 dataset and extract train and val images.

The directory structure is organized as follows:

TS-CAM/
  data/
  ImageNet_ILSVRC2012/
    ILSVRC2012_list/
    train/
      n01440764/
        n01440764_18.JPEG
        ...
      n01514859/
        n01514859_1.JPEG
        ...
    val/
      n01440764/
        ILSVRC2012_val_00000293.JPEG
        ...
      n01531178/
        ILSVRC2012_val_00000570.JPEG
        ...
    ILSVRC2012_list/
      train.txt
      val_folder.txt
      val_folder_new.txt

And the training and validation data is expected to be in the train/ folder and val folder respectively:

For training:

On CUB-200-2011 dataset:

bash train_val_cub.sh {GPU_ID} ${NET}

On ImageNet1k dataset:

bash train_val_ilsvrc.sh {GPU_ID} ${NET}

Please note that pretrained model weights of Deit-tiny, Deit-small and Deit-base on ImageNet-1k model will be downloaded when you first train you model, so the Internet should be connected.

For evaluation:

On CUB-200-2011 dataset:

bash val_cub.sh {GPU_ID} ${NET} ${MODEL_PATH}

On ImageNet1k dataset:

bash val_ilsvrc.sh {GPU_ID} ${NET} ${MODEL_PATH}

GPU_ID should be specified and multiple GPUs can be used for accelerating training and evaluation.

NET shoule be chosen among tiny, small and base.

MODEL_PATH is the path of pretrained model.

Visualization

We provided jupyter notebook in tools_cam folder.

TS-CAM/
  tools-cam/
    visualization_attention_map_cub.ipynb
    visualization_attention_map_imaget.ipynb

Please download pretrained TS-CAM model weights and try more visualzation results((Attention maps using our method and Attention Rollout method)). You can try other interseting images you like to show the localization map(ts-cams).

Visualize localization results

We provide some visualization results as follows.

localization

Visualize attention maps

We can also visualize attention maps from different transformer layers.

attention maps_cub attention_map_ilsvrc

Contacts

If you have any question about our work or this repository, please don't hesitate to contact us by emails.

You can also open an issue under this project.

Citation

If you use this code for a paper please cite:

@article{Gao2021TSCAMTS,
  title={TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization},
  author={Wei Gao and Fang Wan and Xingjia Pan and Zhiliang Peng and Qi Tian and Zhenjun Han and Bolei Zhou and Qixiang Ye},
  journal={ArXiv},
  year={2021},
  volume={abs/2103.14862}
}
Owner
vasgaowei
vasgaowei
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022