Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

Overview

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization

This is the official implementaion of paper TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization

This repository contains Pytorch training code, evaluation code, pretrained models and jupyter notebook for more visualization.

Illustration

Based on Deit, TS-CAM couples attention maps from visual image transformer with semantic-aware maps to obtain accurate localization maps (Token Semantic Coupled Attention Map, ts-cam).

ts-cam

Model Zoo

We provide pretrained TS-CAM models trained on CUB-200-2011 and ImageNet_ILSVRC2012 datasets.

Dataset [email protected] [email protected] Loc.Gt-Known [email protected] [email protected] Baidu Drive Google Drive
CUB-200-2011 71.3 83.8 87.7 80.3 94.8 model model
ILSVRC2012 53.4 64.3 67.6 74.3 92.1 model model

Note: the Extrate Code for Baidu Drive is as follows:

Usage

First clone the repository locally:

git clone https://github.com/vasgaowei/TS-CAM.git

Then install Pytorch 1.7.0+ and torchvision 0.8.1+ and pytorch-image-models 0.3.2:


conda create -n pytorch1.7 python=3.6
conda activate pytorc1.7
conda install anaconda
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.2 -c pytorch
pip install timm==0.3.2

Data preparation

CUB-200-2011 dataset

Please download and extrate CUB-200-2011 dataset.

The directory structure is the following:

TS-CAM/
  data/
    CUB-200-2011/
      attributes/
      images/
      parts/
      bounding_boxes.txt
      classes.txt
      image_class_labels.txt
      images.txt
      image_sizes.txt
      README
      train_test_split.txt

ImageNet1k

Download ILSVRC2012 dataset and extract train and val images.

The directory structure is organized as follows:

TS-CAM/
  data/
  ImageNet_ILSVRC2012/
    ILSVRC2012_list/
    train/
      n01440764/
        n01440764_18.JPEG
        ...
      n01514859/
        n01514859_1.JPEG
        ...
    val/
      n01440764/
        ILSVRC2012_val_00000293.JPEG
        ...
      n01531178/
        ILSVRC2012_val_00000570.JPEG
        ...
    ILSVRC2012_list/
      train.txt
      val_folder.txt
      val_folder_new.txt

And the training and validation data is expected to be in the train/ folder and val folder respectively:

For training:

On CUB-200-2011 dataset:

bash train_val_cub.sh {GPU_ID} ${NET}

On ImageNet1k dataset:

bash train_val_ilsvrc.sh {GPU_ID} ${NET}

Please note that pretrained model weights of Deit-tiny, Deit-small and Deit-base on ImageNet-1k model will be downloaded when you first train you model, so the Internet should be connected.

For evaluation:

On CUB-200-2011 dataset:

bash val_cub.sh {GPU_ID} ${NET} ${MODEL_PATH}

On ImageNet1k dataset:

bash val_ilsvrc.sh {GPU_ID} ${NET} ${MODEL_PATH}

GPU_ID should be specified and multiple GPUs can be used for accelerating training and evaluation.

NET shoule be chosen among tiny, small and base.

MODEL_PATH is the path of pretrained model.

Visualization

We provided jupyter notebook in tools_cam folder.

TS-CAM/
  tools-cam/
    visualization_attention_map_cub.ipynb
    visualization_attention_map_imaget.ipynb

Please download pretrained TS-CAM model weights and try more visualzation results((Attention maps using our method and Attention Rollout method)). You can try other interseting images you like to show the localization map(ts-cams).

Visualize localization results

We provide some visualization results as follows.

localization

Visualize attention maps

We can also visualize attention maps from different transformer layers.

attention maps_cub attention_map_ilsvrc

Contacts

If you have any question about our work or this repository, please don't hesitate to contact us by emails.

You can also open an issue under this project.

Citation

If you use this code for a paper please cite:

@article{Gao2021TSCAMTS,
  title={TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization},
  author={Wei Gao and Fang Wan and Xingjia Pan and Zhiliang Peng and Qi Tian and Zhenjun Han and Bolei Zhou and Qixiang Ye},
  journal={ArXiv},
  year={2021},
  volume={abs/2103.14862}
}
Owner
vasgaowei
vasgaowei
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022