A novel Engagement Detection with Multi-Task Training (ED-MTT) system

Related tags

Deep LearningED-MTT
Overview

ED-MTT

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment. You can check the colab notebook bellow for detailed explanatoins about data loading and code execution.

Open In Colab

Introduction & Problem Definition

With the Covid-19 outbreak, the online working and learning environments became essential in our lives. For this reason, automatic analysis of non-verbal communication becomes crucial in online environments.

Engagement level is a type of social signal that can be predicted from facial expression and body pose. To this end, we propose an end-to-end deep learning-based system that detects the engagement level of the subject in an e-learning environment.

The engagement level feedback is important because:

  • Make aware students of their performance in classes.
  • Will help instructors to detect confusing or unclear parts of the teaching material.

Model Architecture

triplet_loss.png

The proposed system first extracts features with OpenFace, then aggregates frames in a window for calculating feature statistics as additional features. Finally, uses Bi-LSTM for generating vector embeddings from input sequences. In this system, we introduce a triplet loss as an auxiliary task and design the system as a multi-task training framework by taking inspiration from, where self-supervised contrastive learning of multi-view facial expressions was introduced. To the best of our knowledge, this is a novel approach in engagement detection literature. The key novelty of this work is the multi-task training framework using triplet loss together with Mean Squared Error (MSE). The main contributions of this paper are as follows:

  • Multi-task training with triplet and MSE losses introduces an additional regularization and reduces over-fitting due to very small sample size.
  • Using triplet loss mitigates the label reliability problem since it measures relative similarity between samples.
  • A system with lightweight feature extraction is efficient and highly suitable for real-life applications.

Dataset

We evaluate the performance of ED-MTT on a publicly available ``Engagement in The Wild'' dataset which is comprised of separated training and validation sets.

Untitled

The dataset is comprised of 78 subjects (25 females and 53 males) whose ages are ranged from 19 to 27. Each subject is recorded while watching an approximately 5 minutes long stimulus video of a Korean Language lecture.

Results

We compare the performance of ED-MTT with 9 different works from the state-of-the-art which will be reviewed in the rest of this section. Our results show that ED-MTT outperforms these state-of-the-art methods with at least a 5.74% improvement on MSE.

paper_performance.png

Repository structure

ED-MTT
│   README.md
│   Engagement_Labels.txt
|   ED-MTT.ipynb

└───code
│   │   dataloader.py
|   |   model.py
|   |   train.py
|   |   test.py
│   │   fix_path.py
|   |   utils.py
|   |   requirements.txt

└───configs
    │   batchnorm_default.yaml
    │   sweep.yaml

Running the Code

Untitled

Untitled

To train the experiments and manage the experiments, we used PyTorch Lightning together with Weights&Biases. All the detailed explonations to;

  • Load data and pre-trained weights,
  • Train the model from scratch,
  • Manage expriments and hyper-parameter search with wandb,
  • Reproduce the results presented in the paper,

are shown in ED-MTT.ipynb colab notebook.

Owner
Onur Çopur
Data scientist with research interests in computer vision and NLP. Highly skilled in Python programming, MLOps and deep learning frameworks.
Onur Çopur
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022