CVPR 2021 Challenge on Super-Resolution Space

Overview

Learning the Super-Resolution Space Challenge
NTIRE 2021 at CVPR

Learning the Super-Resolution Space challenge is held as a part of the 6th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop in conjunction with CVPR 2021. The goal of this challenge is to develop a super-resolution method that can actively sample from the space of plausible super-resolutions.

How to participate?

To participate in this challenge, please sign up using the following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Tackling the ill-posed nature of Super-Resolution

CVPR 2021 Challenge

Usually, super-resolution (SR) is trained using pairs of high- and low-resolution images. Infinitely many high-resolution images can be downsampled to the same low-resolution image. That means that the problem is ill-posed and cannot be inverted with a deterministic mapping. Instead, one can frame the SR problem as learning a stochastic mapping, capable of sampling from the space of plausible high-resolution images given a low-resolution image. This problem has been addressed in recent works [1, 2, 3]. The one-to-many stochastic formulation of the SR problem allows for a few potential advantages:

  • The development of more robust learning formulations that better accounts for the ill-posed nature of the SR problem.
  • Multiple predictions can be sampled and compared.
  • It opens the potential for controllable exploration and editing in the space of SR predictions.
Super-Resolution with Normalizing Flow Explorable SR Screenshot 2021-01-12 at 16 05 43
[Paper] [Project] [Paper] [Project] [Paper] [Project]
[1] SRFlow: Learning the Super-Resolution Space with Normalizing Flow. Lugmayr et al., ECCV 2020. [2] Explorable Super-Resolution. Bahat & Michaeli, CVPR 2020. [3] DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution. Bühler et al., ACCV 2020.

CVPR 2021 Challenge on Learning the Super-Resolution Space

We organize this challenge to stimulate research in the emerging area of learning one-to-many SR mappings that are capable of sampling from the space of plausible solutions. Therefore the task is to develop a super-resolution method that:

  1. Each individual SR prediction should achieve highest possible photo-realism, as perceived by humans.
  2. Is capable of sampling an arbitrary number of SR images capturing meaningful diversity, corresponding to the uncertainty induced by the ill-posed nature of the SR problem together with image priors.
  3. Each individual SR prediction should be consistent with the input low-resolution image.

The challenge contains two tracks, targeting 4X and 8X super-resolution respectively. You can download the training and validation data in the table below. At a later stage, the low-resolution of the test set will be released.

  Training Validation
  Low-Resolution High-Resolution Low-Resolution High-Resolution
Track 4X 4X LR Train 4X HR Train 4X LR Valid 4X HR Valid
Track 8X 8X LR Train 8X HR Train 8X LR Valid 8X HR Valid

Challenge Rules

To guide the research towards useful and generalizable techniques, submissions need to adhere to the following rules. All participants must submit code of their solution along with the final results.

  • The method must be able to generate an arbitrary number of diverse samples. That is, your method cannot be limited to a maximum number of different SR samples (corresponding to e.g. a certain number of different output network heads).
  • All SR samples must be generated by a single model. That is, no ensembles are allowed.
  • No self-ensembles during inference (e.g. flipping and rotation).
  • All SR samples must be generated using the same hyper-parameters. That is, the generated SR samples shall not be the result of different choices of hyper-parameters during inference.
  • We accept submissions of deterministic methods. However, they will naturally score zero in the diversity measure and therefore not be able to win the challenge.
  • Other than the validation and test split of the DIV2k dataset, any training data or pre-training is allowed. You are not allowed to use DIV2K validation or test sets (low- and high-resolution images) for training.

Evaluation Protocol

A method is evaluated by first predicting a set of 10 randomly sampled SR images for each low-resolution image in the dataset. From this set of images, evaluation metrics corresponding to the three criteria above will be considered. The participating methods will be ranked according to each metric. These ranks will then be combined into a final score. The three evaluation metrics are described next.

git clone --recursive https://github.com/andreas128/NTIRE21_Learning_SR_Space.git
python3 measure.py OutName path/to/Ground-Truch path/to/Super-Resolution n_samples scale_factor

# n_samples = 10
# scale_factor = 4 for 4X and 8 for 8X

How we measure Photo-realism?

To assess the photo-realism, a human study will be performed on the test set for the final submission.

Automatically assessing the photo-realism and image quality is an extremely difficult task. All existing methods have severe shortcomings. As a very rough guide, you can use the LPIPS distance. Note: LPIPS will not be used to score photo-realism of you final submission. So beware of overfitting to LPIPS, as that can lead to worse results. LPIPS is integrated in our provided toolkit in measure.py.

How we measure the spanning of the SR Space?

The samples of the developed method should provide a meaningful diversity. To measure that, we define the following score. We sample 10 images, densely calculate a metric between the samples and the ground truth. To obtain the local best we pixel-wise select the best score out of the 10 samples and take the full image's average. The global best is obtained by averaging the whole image's score and selecting the best. Finally, we calculate the score using the following formula:

score = (global best - local best)/(global best) * 100

ESRGAN SRFlow
Track 4X 0 25.36
Track 8X 0 10.62

How we measure the Low Resolution Consistency

To measure how much information is preserved in the super-resloved image from the low-resolution image, we measure the LR-PSNR. The goal in this challenge is to obtain a LR-PSNR of 45dB. All approaches that have an average PSNR above this value will be ranked equally in terms of this criteria.

ESRGAN SRFlow
Track 4X 39.01 49.91
Track 8X 31.28 50.0

Important Dates

Date Event
2021.03.01 Final test data release (inputs only)
2021.03.08 test result submission deadline
2021.03.09 fact sheet / code / model submission deadline
2021.03.11 test preliminary score release to the participants
2021.03.28 challenge paper submission deadline
2021.04.13 camera-ready deadline
2021.06.15 workshop day

Submission of Final Test Results

After the final testing phase, participants will be asked to submit:

  • SR predictions on the test set.
  • Code.
  • A fact sheet describing their method.

Details will follow when the test phase starts ...

Issues and questions

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

CVPR 2021 NTIRE Terms and conditions

The terms and conditions for participating in the challenge are provided here

How to participate?

To participate in this challenge, please sign up using following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Owner
andreas
andreas
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022