Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Overview

Noisy Natural Gradient as Variational Inference

PyTorch implementation of Noisy Natural Gradient as Variational Inference.

Requirements

  • Python 3
  • Pytorch
  • visdom

Comments

  • This paper is about how to optimize bayesian neural network which has matrix variate gaussian distribution.
  • This implementation contains Noisy Adam optimizer which is for Fully Factorized Gaussian(FFG) distribution, and Noisy KFAC optimizer which is for Matrix Variate Gaussian(MVG) distribution.
  • These optimizers only work with bayesian network which has specific structure that I will mention below.
  • Currently only linear layer is available.

Experimental comments

  • I addded a lr scheduler to noisy KFAC because loss is exploded during training. I guess this happens because of slight approximation.
  • For MNIST training noisy KFAC is 15-20x slower than noisy Adam, as mentioned in paper.
  • I guess the noisy KFAC needs more epochs to train simple neural network structure like 2 linear layers.

Usage

Currently only MNIST dataset are currently supported, and only fully connected layer is implemented.

Options

  • model : Fully Factorized Gaussian(FFG) or Matrix Variate Gaussian(MVG)
  • n : total train dataset size. need this value for optimizer.
  • eps : parameter for optimizer. Default to 1e-8.
  • initial_size : initial input tensor size. Default to 784, size of MNIST data.
  • label_size : label size. Default to 10, size of MNIST label.

More details in option_parser.py

Train

$ python train.py --model=FFG --batch_size=100 --lr=1e-3 --dataset=MNIST
$ python train.py --model=MVG --batch_size=100 --lr=1e-2 --dataset=MNIST --n=60000

Visualize

  • To visualize intermediate results and loss plots, run python -m visdom.server and go to the URL http://localhost:8097

Test

$ python test.py --epoch=20

Training Graphs

1. MNIST

  • network is consist of 2 linear layers.
  • FFG optimized by noisy Adam : epoch 20, lr 1e-3

  • MVG optimized by noisy KFAC : epoch 100, lr 1e-2, decay 0.1 for every 30 epochs
  • Need to tune learning rate.

Implementation detail

  • Optimizing parameter procedure is consists of 2 steps, Calculating gradient and Applying to bayeisan parameters.
  • Before forward, network samples parameters with means & variances.
  • Usually calling step function updates parameters, but not this case. After calling step function, you have to update bayesian parameters. Look at the ffg_model.py

TODOs

  • More benchmark cases
  • Supports bayesian convolution
  • Implement Block Tridiagonal Covariance, which is dependent between layers.

Code reference

Visualization code(visualizer.py, utils.py) references to pytorch-CycleGAN-and-pix2pix(https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) by Jun-Yan Zhu

Author

Tony Kim

Owner
Tony JiHyun Kim
CEO/Tech Lead @PostAlpine Co., Ltd.
Tony JiHyun Kim
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022