PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

Overview

StarEnhancer

StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral)

Abstract: Image enhancement is a subjective process whose targets vary with user preferences. In this paper, we propose a deep learning-based image enhancement method covering multiple tonal styles using only a single model dubbed StarEnhancer. It can transform an image from one tonal style to another, even if that style is unseen. With a simple one-time setting, users can customize the model to make the enhanced images more in line with their aesthetics. To make the method more practical, we propose a well-designed enhancer that can process a 4K-resolution image over 200 FPS but surpasses the contemporaneous single style image enhancement methods in terms of PSNR, SSIM, and LPIPS. Finally, our proposed enhancement method has good interactability, which allows the user to fine-tune the enhanced image using intuitive options.

StarEnhancer

Getting started

Install

We test the code on PyTorch 1.8.1 + CUDA 11.1 + cuDNN 8.0.5, and close versions also work fine.

pip install -r requirements.txt

We mainly train the model on RTX 2080Ti * 4, but a smaller mini batch size can also work.

Prepare

You can generate your own dataset, or download the one we generate.

The final file path should be the same as the following:

┬─ save_model
│   ├─ stylish.pth.tar
│   └─ ... (model & embedding)
└─ data
    ├─ train
    │   ├─ 01-Experts-A
    │   │   ├─ a0001.jpg
    │   │   └─ ... (id.jpg)
    │   └─ ... (style folder)
    ├─ valid
    │   └─ ... (style folder)
    └─ test
        └─ ... (style folder)

Download

Data and pretrained models are available on GoogleDrive.

Generate

  1. Download raw data from MIT-Adobe FiveK Dataset.
  2. Download the modified Lightroom database fivek.lrcat, and replace the original database with it.
  3. Generate dataset in JPEG format with quality 100, which can refer to this issue.
  4. Run generate_dataset.py in data folder to generate dataset.

Train

Firstly, train the style encoder:

python train_stylish.py

Secondly, fetch the style embedding for each sample in the train set:

python fetch_embedding.py

Lastly, train the curve encoder and mapping network:

python train_enhancer.py

Test

Just run:

python test.py

Testing LPIPS requires about 10 GB GPU memory, and if an OOM occurs, replace the following lines

lpips_val = loss_fn_alex(output * 2 - 1, target_img * 2 - 1).item()

with

lpips_val = 0

Notes

Due to agreements, we are unable to release part of the source code. This repository provides a pure python implementation for research use. There are some differences between the repository and the paper as follows:

  1. The repository uses a ResNet-18 w/o BN as the curve encoder's backbone, and the paper uses a more lightweight model.
  2. The paper uses CUDA to implement the color transform function, and the repository uses torch.gather to implement it.
  3. The repository removes some tricks used in training lightweight models.

Overall, this repository can achieve higher performance, but will be slightly slower.

Comments
  • Multi-style, unpaired setting

    Multi-style, unpaired setting

    您好,在多风格非配对图场景,能否交换source和target的位置,并将得到的output_A和output_B进一步经过enhancer,得到recover_A和recover_B。最后计算l1_loss(source, recover_A)和l1_loss(target, recover_B)及Triplet_loss(output_A,target, source) 和 Triplet_loss(output_B,source,target)

    def train(train_loader, mapping, enhancer, criterion, optimizer):
        losses = AverageMeter()
        criterionTriplet = torch.nn.TripletMarginLoss(margin=1.0, p=2)
        FEModel = Feature_Extract_Model().cuda()
    
        mapping.train()
        enhancer.train()
    
        for (source_img, source_center, target_img, target_center) in train_loader:
            source_img = source_img.cuda(non_blocking=True)
            source_center = source_center.cuda(non_blocking=True)
            target_img = target_img.cuda(non_blocking=True)
            target_center = target_center.cuda(non_blocking=True)
    
            style_A = mapping(source_center)
            style_B = mapping(target_center)
    
            output_A = enhancer(source_img, style_A, style_B)
            output_B = enhancer(target_img, style_B, style_A)
            recoverA = enhancer(output_A, style_B, style_A)
            recoverB = enhancer(output_B, style_A, style_B)
    
            source_img_feature = FEModel(source_img)
            target_img_feature = FEModel(target_img)
            output_A_feature = FEModel(output_A)
            output_B_feature = FEModel(output_B)
    
            loss_l1 = criterion(recoverA, source_img) + criterion(recoverB, target_img)
            loss_triplet = criterionTriplet(output_B_feature, source_img_feature, target_img_feature) + \
                           criterionTriplet(output_A_feature, target_img_feature, source_img_feature)
            loss = loss_l1 + loss_triplet
    
            losses.update(loss.item(), args.t_batch_size)
    
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
        return losses.avg
    
    opened by jxust01 4
  • Questions about dataset preparation

    Questions about dataset preparation

    您好,我想用您的工程跑一下自己的数据,现在有输入,输出一组数据对,训练数据里面A-E剩下的4种效果是怎样生成的呢,这些目标效果数据能否是非成对的呢?如果只有一种风格,能否A-E目标效果都拷贝成一样的数据呢,在train_enhancer.py所训练的单风格脚本是需要embeddings.npy文件,这个文件在单风格训练时是必须的吗

    opened by zener90818 4
  • Dataset processing

    Dataset processing

    你好,我在您提供的fivek.lrcat没找到 DeepUPE issue里的"(default) input with ExpertC"。请问单风格实验的输入是下图中的“InputAsShotZeroed”还是“(Q)InputZeroed with ExpertC WhiteBalance” image

    opened by madfff 2
  • Configure Renovate

    Configure Renovate

    WhiteSource Renovate

    Welcome to Renovate! This is an onboarding PR to help you understand and configure settings before regular Pull Requests begin.

    🚦 To activate Renovate, merge this Pull Request. To disable Renovate, simply close this Pull Request unmerged.


    Detected Package Files

    • requirements.txt (pip_requirements)

    Configuration Summary

    Based on the default config's presets, Renovate will:

    • Start dependency updates only once this onboarding PR is merged
    • Enable Renovate Dependency Dashboard creation
    • If semantic commits detected, use semantic commit type fix for dependencies and chore for all others
    • Ignore node_modules, bower_components, vendor and various test/tests directories
    • Autodetect whether to pin dependencies or maintain ranges
    • Rate limit PR creation to a maximum of two per hour
    • Limit to maximum 20 open PRs at any time
    • Group known monorepo packages together
    • Use curated list of recommended non-monorepo package groupings
    • Fix some problems with very old Maven commons versions
    • Ignore spring cloud 1.x releases
    • Ignore http4s digest-based 1.x milestones
    • Use node versioning for @types/node
    • Limit concurrent requests to reduce load on Repology servers until we can fix this properly, see issue 10133

    🔡 Would you like to change the way Renovate is upgrading your dependencies? Simply edit the renovate.json in this branch with your custom config and the list of Pull Requests in the "What to Expect" section below will be updated the next time Renovate runs.


    What to Expect

    With your current configuration, Renovate will create 1 Pull Request:

    Pin dependency torch to ==1.10.0
    • Schedule: ["at any time"]
    • Branch name: renovate/pin-dependencies
    • Merge into: main
    • Pin torch to ==1.10.0

    ❓ Got questions? Check out Renovate's Docs, particularly the Getting Started section. If you need any further assistance then you can also request help here.


    This PR has been generated by WhiteSource Renovate. View repository job log here.

    opened by renovate[bot] 1
  • The results are not the same as the paper

    The results are not the same as the paper

    I am the author.

    Some peers have emailed me asking about the performance of the open source model that does not agree with the results in the paper. As stated in the README, the model is not the model of the paper, but the performance is similar. The exact result should be: PSNR: 25.41, SSIM: 0.942, LPIPS: 0.085

    If you find that your result is not this, then it may be that the JPEG codec is different, which is related to the version of opencv and how it is installed.

    You can uninstall your opencv (either with pip or conda) and reinstall it using pip (it must be pip, because conda installs a different JPEG codec):

    pip install opencv-python==4.5.5.62​
    
    opened by IDKiro 0
Owner
IDKiro
Stroll in the abyss
IDKiro
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022