DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

Related tags

Deep LearningDeeBERT
Overview

DeeBERT

This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference.

Code in this repository is also available in the Huggingface Transformer repo (with minor modification for version compatibility). Check this page for models that we have trained in advance (the latest version of Huggingface Transformers Library is needed).

Installation

This repo is tested on Python 3.7.5, PyTorch 1.3.1, and Cuda 10.1. Using a virtulaenv or conda environemnt is recommended, for example:

conda install pytorch==1.3.1 torchvision cudatoolkit=10.1 -c pytorch

After installing the required environment, clone this repo, and install the following requirements:

git clone https://github.com/castorini/deebert
cd deebert
pip install -r ./requirements.txt
pip install -r ./examples/requirements.txt

Usage

There are four scripts in the scripts folder, which can be run from the repo root, e.g., scripts/train.sh.

In each script, there are several things to modify before running:

  • path to the GLUE dataset. Check this for more details.
  • path for saving fine-tuned models. Default: ./saved_models.
  • path for saving evaluation results. Default: ./plotting. Results are printed to stdout and also saved to npy files in this directory to facilitate plotting figures and further analyses.
  • model_type (bert or roberta)
  • model_size (base or large)
  • dataset (SST-2, MRPC, RTE, QNLI, QQP, or MNLI)

train.sh

This is for fine-tuning and evaluating models as in the original BERT paper.

train_highway.sh

This is for fine-tuning DeeBERT models.

eval_highway.sh

This is for evaluating each exit layer for fine-tuned DeeBERT models.

eval_entropy.sh

This is for evaluating fine-tuned DeeBERT models, given a number of different early exit entropy thresholds.

Citation

Please cite our paper if you find the repository useful:

@inproceedings{xin-etal-2020-deebert,
    title = "{D}ee{BERT}: Dynamic Early Exiting for Accelerating {BERT} Inference",
    author = "Xin, Ji  and
      Tang, Raphael  and
      Lee, Jaejun  and
      Yu, Yaoliang  and
      Lin, Jimmy",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.204",
    pages = "2246--2251",
}
Owner
Castorini
Deep learning for natural language processing and information retrieval at the University of Waterloo
Castorini
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023