A simple consistency training framework for semi-supervised image semantic segmentation

Overview

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation

PseudoSeg is a simple consistency training framework for semi-supervised image semantic segmentation, which has a simple and novel re-design of pseudo-labeling to generate well-calibrated structured pseudo labels for training with unlabeled or weakly-labeled data. It is implemented by Yuliang Zou (research intern) in 2020 Summer.

This is not an official Google product.

Instruction

Installation

  • Use a virtual environment
virtualenv -p python3 --system-site-packages env
source env/bin/activate
  • Install packages
pip install -r requirements.txt

Dataset

Create a dataset folder under the ROOT directory, then download the pre-created tfrecords for voc12 and coco, and extract them in dataset folder. You may also want to check the filenames for each split under data_splits folder.

Training

NOTE:

  • We train all our models using 16 V100 GPUs.
  • The ImageNet pre-trained models can be download here.
  • For VOC12, ${SPLIT} can be 2_clean, 4_clean, 8_clean, 16_clean_3 (representing 1/2, 1/4, 1/8, and 1/16 splits), NUM_ITERATIONS should be set to 30000.
  • For COCO, ${SPLIT} can be 32_all, 64_all, 128_all, 256_all, 512_all (representing 1/32, 1/64, 1/128, 1/256, and 1/512 splits), NUM_ITERATIONS should be set to 200000.

Supervised baseline

python train_sup.py \
  --logtostderr \
  --train_split="${SPLIT}" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --train_crop_size="513,513" \
  --num_clones=16 \
  --train_batch_size=64 \
  --training_number_of_steps="${NUM_ITERATIONS}" \
  --fine_tune_batch_norm=true \
  --tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
  --train_logdir="${TRAIN_LOGDIR}" \
  --dataset_dir="${DATASET}"

PseudoSeg (w/ unlabeled data)

python train_wss.py \
  --logtostderr \
  --train_split="${SPLIT}" \
  --train_split_cls="train_aug" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --train_crop_size="513,513" \
  --num_clones=16 \
  --train_batch_size=64 \
  --training_number_of_steps="${NUM_ITERATIONS}" \
  --fine_tune_batch_norm=true \
  --tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
  --train_logdir="${TRAIN_LOGDIR}" \
  --dataset_dir="${DATASET}"

PseudoSeg (w/ image-level labeled data)

python train_wss.py \
  --logtostderr \
  --train_split="${SPLIT}" \
  --train_split_cls="train_aug" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --train_crop_size="513,513" \
  --num_clones=16 \
  --train_batch_size=64 \
  --training_number_of_steps="${NUM_ITERATIONS}" \
  --fine_tune_batch_norm=true \
  --tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
  --train_logdir="${TRAIN_LOGDIR}" \
  --dataset_dir="${DATASET}" \
  --weakly=true

Evaluation

NOTE: ${EVAL_CROP_SIZE} should be 513,513 for VOC12, 641,641 for COCO.

python eval.py \
  --logtostderr \
  --eval_split="val" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --eval_crop_size="${EVAL_CROP_SIZE}" \
  --checkpoint_dir="${TRAIN_LOGDIR}" \
  --eval_logdir="${EVAL_LOGDIR}" \
  --dataset_dir="${DATASET}" \
  --max_number_of_evaluations=1

Visualization

NOTE: ${VIS_CROP_SIZE} should be 513,513 for VOC12, 641,641 for COCO.

python vis.py \
  --logtostderr \
  --vis_split="val" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --vis_crop_size="${VIS_CROP_SIZE}" \
  --checkpoint_dir="${CKPT}" \
  --vis_logdir="${VIS_LOGDIR}" \
  --dataset_dir="${PASCAL_DATASET}" \
  --also_save_raw_predictions=true

Citation

If you use this work for your research, please cite our paper.

@article{zou2020pseudoseg,
  title={PseudoSeg: Designing Pseudo Labels for Semantic Segmentation},
  author={Zou, Yuliang and Zhang, Zizhao and Zhang, Han and Li, Chun-Liang and Bian, Xiao and Huang, Jia-Bin and Pfister, Tomas},
  journal={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Google Interns
Google Interns
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
đŸ•šī¸ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022