The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

Related tags

Deep LearningDeepBDC
Overview

DeepBDC for few-shot learning

      

Introduction

In this repo, we provide the implementation of the following paper:
"Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification" [Project] [Paper].

In this paper, we propose deep Brownian Distance Covariance (DeepBDC) for few-shot classification. DeepBDC can effectively learn image representations by measuring, for the query and support images, the discrepancy between the joint distribution of their embedded features and product of the marginals. The core of DeepBDC is formulated as a modular and efficient layer, which can be flexibly inserted into deep networks, suitable not only for meta-learning framework based on episodic training, but also for the simple transfer learning (STL) framework of pretraining plus linear classifier.

If you find this repo helpful for your research, please consider citing our paper:

@inproceedings{DeepBDC-CVPR2022,
    title={Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification},
    author={Jiangtao Xie and Fei Long and Jiaming Lv and Qilong Wang and Peihua Li}, 
    booktitle={CVPR},
    year={2022}
 }

Few-shot classification Results

Experimental results on miniImageNet and CUB. We report average results with 2,000 randomly sampled episodes for both 1-shot and 5-shot evaluation. More details on the experiments can be seen in the paper.

miniImageNet

Method ResNet-12 Pre-trained models Meta-trained models
5-way-1-shot 5-way-5-shot GoogleDrive BaiduCloud GoogleDrive BaiduCloud
ProtoNet 62.11±0.44 80.77±0.30 Download Download Download Download
Good-Embed 64.98±0.44 82.10±0.30 Download Download N/A
Meta DeepBDC 67.34±0.43 84.46±0.28 Download Download Download Download
STL DeepBDC 67.83±0.43 85.45±0.29 Download Download N/A

Note that for Good-Embed and STL DeepBDC, a sequential self-distillation technique is used to obtain the pre-trained models; See the paper of Good-Embed for details.

CUB

Method ResNet-18 Pre-trained models Meta-trained models
5-way-1-shot 5-way-5-shot GoogleDrive BaiduCloud GoogleDrive BaiduCloud
ProtoNet 80.90±0.43 89.81±0.23 Download Download Download Download
Good-Embed 77.92±0.46 89.94±0.26 Download Download N/A
Meta DeepBDC 83.55±0.40 93.82±0.17 Download Download Download Download
STL DeepBDC 84.01±0.42 94.02±0.24 Download Download N/A

Note that for Good-Embed and STL DeepBDC, a sequential self-distillation technique is used to obtain the pre-trained models; See the paper of Good-Embed for details.

References

[BDC] G. J. Szekely and M. L. Rizzo. Brownian distance covariance. Annals of Applied Statistics, 3:1236–1265, 2009.
[ProtoNet] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.
[Good-Embed] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking few-shot image classification: a good embedding is all you need? In ECCV, 2020.

Implementation details

Datasets

  • miniImageNet: We use the splits provided by Chen et al.
  • CUB: We use the splits provided by Chen et al.
  • tieredImageNet
  • Aircraft
  • Cars

Implementation environment

Note that the test accuracy may slightly vary with different Pytorch/CUDA versions, GPUs, etc.

  • Linux
  • Python 3.8.3
  • torch 1.7.1
  • GPU (RTX3090) + CUDA11.0 CuDNN
  • sklearn1.0.1, pillow8.0.0, numpy1.19.2

Installation

  • Clone this repo:
git clone https://github.com/Fei-Long121/DeepBDC.git
cd DeepBDC

For Meta DeepBDC on general object recognition

  1. cd scripts/mini_magenet/run_meta_deepbdc
  2. modify the dataset path in run_pretrain.sh, run_metatrain.sh and run_test.sh
  3. bash run.sh

For STL DeepBDC on general object recognition

  1. cd scripts/mini_imagenet/run_stl_deepbdc
  2. modify the dataset path in run_pretrain.sh, run_distillation.sh and run_test.sh
  3. bash run.sh

Acknowledgments

Our code builds upon the the following code publicly available:

Contact

If you have any questions or suggestions, please contact us:

Fei Long([email protected])
Jiaming Lv([email protected])

Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022