An Api for Emotion recognition.

Overview

License: MIT Python 3.7|3.6|3.5|3.4 Deploy

PLAYEMO

Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs.


Use Cases

Is Python your language of choice? If so, we have a [fully-supported Python API client] that makes working with the playemo API an easy task!

There are many reasons to use the playemo API. The most common use case is to predict the emotion of a person from a single photograph. However, this can also be used as a facial detection engine which returns a cropped out image of the face detected in a single photograph.!

Authorization

All API requests require the use of an API key

To authenticate an API request, you should provide your the api_key=[API_KEY] as a GET parameter to authorize yourself to the API. But note that this is likely to leave traces in things like your history, if accessing the API through a browser.

GET /?api_key=12345678901234567890123456789012
Parameter Type Description
api_key string Required. Your Playemo API key

Responses

Many API endpoints return the JSON representation of the resources created or edited. However, if an invalid request is submitted, or some other error occurs, Playemo returns a JSON response in the following format:

{
  "error" : string,
  "success" : bool,
  "result"    : string
}

The error attribute contains a message commonly used to indicate errors or, in the case of deleting a resource, success that the resource was properly deleted.

The success attribute describes if the transaction was successful or not.

The result attribute contains any other metadata associated with the response. This will be an escaped string containing JSON data.

Status Codes

Playemo returns the following status codes in its API:

Status Code Description
200 OK
201 CREATED
400 BAD REQUEST
404 NOT FOUND
500 INTERNAL SERVER ERROR

Links

Please don't hesitate to file an issue if you see anything missing.

Screenshots

Home Page

Available Commands

In the project directory, you can run: python--version" : "check python version",

Since tensorflow supports python 3.7,3.6,3.5 or 3.4, i would advice you have python 3.6 installed on your machine.

pip install -r requirements.txt" : "required libaries installed",

This will install the the neccesarry libaries needed to run the application on your machine.

python app.py" : "python-scripts start",

The app is built using Flask so this command Runs the app in Development mode. Open http://localhost:5000 to view it in the browser. The page will reload if you make edits. You will also see any lint errors in the console.

Built With

  • Python
  • Flask
  • Mtcnn
  • TensorFlow
  • Keras
  • CSS
  • HTML

Future Updates

  • A playlist recommendation system based on Emotion predicted

Author

DERHNYEL

🤝 Support

Contributions, issues, and feature requests are welcome!

Give a ⭐️ if you like this project!

Owner
greek geek
greek geek
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022