An Api for Emotion recognition.

Overview

License: MIT Python 3.7|3.6|3.5|3.4 Deploy

PLAYEMO

Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs.


Use Cases

Is Python your language of choice? If so, we have a [fully-supported Python API client] that makes working with the playemo API an easy task!

There are many reasons to use the playemo API. The most common use case is to predict the emotion of a person from a single photograph. However, this can also be used as a facial detection engine which returns a cropped out image of the face detected in a single photograph.!

Authorization

All API requests require the use of an API key

To authenticate an API request, you should provide your the api_key=[API_KEY] as a GET parameter to authorize yourself to the API. But note that this is likely to leave traces in things like your history, if accessing the API through a browser.

GET /?api_key=12345678901234567890123456789012
Parameter Type Description
api_key string Required. Your Playemo API key

Responses

Many API endpoints return the JSON representation of the resources created or edited. However, if an invalid request is submitted, or some other error occurs, Playemo returns a JSON response in the following format:

{
  "error" : string,
  "success" : bool,
  "result"    : string
}

The error attribute contains a message commonly used to indicate errors or, in the case of deleting a resource, success that the resource was properly deleted.

The success attribute describes if the transaction was successful or not.

The result attribute contains any other metadata associated with the response. This will be an escaped string containing JSON data.

Status Codes

Playemo returns the following status codes in its API:

Status Code Description
200 OK
201 CREATED
400 BAD REQUEST
404 NOT FOUND
500 INTERNAL SERVER ERROR

Links

Please don't hesitate to file an issue if you see anything missing.

Screenshots

Home Page

Available Commands

In the project directory, you can run: python--version" : "check python version",

Since tensorflow supports python 3.7,3.6,3.5 or 3.4, i would advice you have python 3.6 installed on your machine.

pip install -r requirements.txt" : "required libaries installed",

This will install the the neccesarry libaries needed to run the application on your machine.

python app.py" : "python-scripts start",

The app is built using Flask so this command Runs the app in Development mode. Open http://localhost:5000 to view it in the browser. The page will reload if you make edits. You will also see any lint errors in the console.

Built With

  • Python
  • Flask
  • Mtcnn
  • TensorFlow
  • Keras
  • CSS
  • HTML

Future Updates

  • A playlist recommendation system based on Emotion predicted

Author

DERHNYEL

🀝 Support

Contributions, issues, and feature requests are welcome!

Give a ⭐️ if you like this project!

Owner
greek geek
greek geek
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
πŸ€– Project template for your next awesome AI project. 🦾

πŸ€– AI Awesome Project Template πŸ‘‹ Template author You may want to adjust badge links in a README.md file. πŸ’Ž Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
πŸ”Ž Monitor deep learning model training and hardware usage from your mobile phone πŸ“±

Monitor deep learning model training and hardware usage from mobile. πŸ”₯ Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022