Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Overview

Blockchain-enabled Server-less Federated Learning

Repository containing the files used to reproduce the results of the publication "Blockchain-enabled Server-less Federated Learning".

''BibTeX'' citation:

@article{wilhelmi2021blockchain,
  title={Blockchain-enabled Server-less Federated Learning},
  author={Wilhelmi, Francesc, Giupponi, Lorenza and Dini, Paolo},
  journal={arXiv preprint arXiv:2112.07938
},
  year={2021}
}

Table of Contents

Authors

Abstract

Motivated by the heterogeneous nature of devices participating in large-scale Federated Learning (FL) optimization, we focus on an asynchronous server-less FL solution empowered by Blockchain (BC) technology. In contrast to mostly adopted FL approaches, which assume synchronous operation, we advocate an asynchronous method whereby model aggregation is done as clients submit their local updates. The asynchronous setting fits well with the federated optimization idea in practical large-scale settings with heterogeneous clients. Thus, it potentially leads to higher efficiency in terms of communication overhead and idle periods. To evaluate the learning completion delay of BC-enabled FL, we provide an analytical model based on batch service queue theory. Furthermore, we provide simulation results to assess the performance of both synchronous and asynchronous mechanisms. Important aspects involved in the BC-enabled FL optimization, such as the network size, link capacity, or user requirements, are put together and analyzed. As our results show, the synchronous setting leads to higher prediction accuracy than the asynchronous case. Nevertheless, asynchronous federated optimization provides much lower latency in many cases, thus becoming an appealing FL solution when dealing with large data sets, tough timing constraints (e.g., near-real-time applications), or highly varying training data.

Repository description

This repository contains the resources used to generate the results included in the paper entitled "Blockchain-enabled Server-less Federated Learning". The files included in this repository are:

  1. LaTeX files: contains the files used to generate the manuscript.
  2. Code & Results: scripts and code used to generate the results included in the paper.
  • Queue code: scripts used to execute the Blockchain queuing delay simulations through the batch-service queue simulator.
  • TensorFlow code: python scripts used to execute the FL mechanisms through TensorFlowFederated.
  • Matlab code: matlab scripts used to process the results and plot the figures included in the manuscript.
  • Outputs: files containing the outputs from the different resources (queue simulator, TFF).
  • Figures: figures included in the manuscript and others with preliminary results.

Usage

Part 1: Batch service queue analysis

To generate the results related to the analysis of the queueing delay in the Blockchain, we used our batch-service queue simulator (commit: f846b66). Please, refer to that repository's documentation for installation/execution guidelines. As for the corresponding theoretical background, more details can be found in [1].

The obtained results from this part can be found at "Matlab code/output_queue_simulator". To reproduce them, execute the scripts from the "Batch service queue" folder in the batch-service queue simulator.

Part 2: FLchain analysis

Tensorflow Federated (TFF) has been used to evaluate the proposed s-FLchain and a-FLchain mechanisms in the manuscript. To get started with TF (and TFF), we strongly recommend using the tutorials in https://www.tensorflow.org/federated/tutorials/tutorials_overview.

Once the TFF environment has been setup, our results can be reproduced by using the scripts in "TensorFlow code":

  1. centalized_baseline.py: centralized ML model for getting baseline results (upper/lower bounds).
  2. sFLchain_vs_aFLchain.py: script generating the output for the comparison of the synchronous and the asynchronous models.

The output results from this part can be found at "Matlab code/output_tensorflow".

Part 3: End-to-end analysis framework

Finally, to gather all the resources together, we have used the end-to-end latency framework contained in this repository ("Matlab code/simulation_scripts"). Those files contain the communication and computation models used to calculate the total latency experienced by each considered Blockchain-enabled FL mechanism. Moreover, to get the end-to-end latency and accuracy results, the abovementioned scripts gather and process the outputs obtained from both batch-service queue simulator and TFF.

Content:

  1. 0_preliminary_results: evaluation of several FL parameters via TFF (out of the scope of this publication).
  2. 1_blockchain_analysis: evaluation of the Blockchain queuing delay (refer to Part 1: Batch service queue analysis).
  3. 2_flchain: evaluation of the FL accuracy (refer to Part 2: FLchain analysis) and end-to-end latency analysis. Includes models to compute communication and computation-related delays.

Performance Evaluation

Simulation parameters

The simulation parameters used in the publication are as follows:

Parameter Value
Number of miners 19
Transaction size 5 kbits
BC Block header size 20 kbits
Max. waiting time 1000 seconds
Queue length 1000 packets
--------- --------------------------------------- ----------------------
Min/max distance Client-BS 0/4.15 meters
Bandwidth. 180 kHz
Min/max distance Client-BS 2 GHz
Min/max distance Client-BS 0 dBi
Comm. Loss at the reference distance (P_L0) 5 dB
Path-loss exponent (α) 4.4
Shadowing factor (σ) 9.5
Obstacles factor (γ) 30
Ground noise -95 dBm
Capacity P2P links 5 Mbps
--------- --------------------------------------- ----------------------
Learning algorithm Neural Network
Number of hidden layers 2
Activation function ReLU
Optimizer SGD
Loss function Cat. cross-entropy
ML Learning rate (local/global) 0.01/1
Epochs number 5
Batch size 20
CPU cycles to process a data point 10^-5
Clients' clock speed 1 GHz

Simulation Results

In what follows, we present the results presented in the manuscript. First, we refer to the Blockchain queuing delay analysis, where we assess the sensitivity of the Blockchain on various parameters, including the block size, the mining rate, the traffic intensity, or the miners' communication capacity.

Next, we provide a broader vision of the Blockchain transaction confirmation latency by including other delays different than the queuing delay, such as transaction upload, block generation, or block propagation.

Finally, we present the results obtained for the evaluation of s-FLchain and a-FLchain in terms of learning accuracy and learning completion time:

References

[1] Wilhelmi, F., & Giupponi, L. (2021). Discrete-Time Analysis of Wireless Blockchain Networks. arXiv preprint arXiv:2104.05586.

Contribute

If you want to contribute, please contact to [email protected].

Owner
Francesc Wilhelmi
PhD Student at the Wireless Networking Research Group (Universitat Pompeu Fabra)
Francesc Wilhelmi
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022