WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

Overview

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Test-CPU

Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a replica of the stable version in NVIDIA Neural Module repository (NVIDIA NeMo).

NOTE: The code here will have experimental extensions and may be potentially unstable, use the version in NeMo for long term supported loss version of RNNT for PyTorch.

Supported Features

Currently supports :

  1. WarpRNNT loss in pytorch for CPU / CUDA (jit compiled)
  2. FastEmit
  3. Gradient Clipping (from Torch Audio)

Installation

You will need PyTorch (usually the latest version should be used), plus installation of Numba in a Conda environment (pip only environment is untested but may work).

# Follow installation instructions to install pytorch from website (with cuda if required)
conda install -c conda-force numba or conda update -c conda-forge numba (to get latest version)

# Then install this library
pip install --upgrade git+https://github.com/titu1994/warprnnt_numba.git

Usage

Import warprnnt_numba and use RNNTLossNumba. If attempting to use CUDA version of loss, it is advisable to test that your installed CUDA version is compatible with numba version using numba_utils.

There is also included a very slow numpy/pytorch explicit-loop based loss implementation for verification of exact correct results.

import torch
import numpy as np
import warprnnt_numba

# Define the loss function
fastemit_lambda = 0.001  # any float >= 0.0
loss_pt = warprnnt_numba.RNNTLossNumba(blank=4, reduction='sum', fastemit_lambda=fastemit_lambda)

# --------------
# Example usage

device = "cuda"
torch.random.manual_seed(0)

# Assume Batchsize=2, Acoustic Timesteps = 8, Label Timesteps = 5 (including BLANK=BOS token),
# and Vocabulary size of 5 tokens (including RNNT BLANK)
acts = torch.randn(2, 8, 5, 5, device=device, requires_grad=True)
sequence_length = torch.tensor([5, 8], dtype=torch.int32,
                               device=device)  # acoustic sequence length. One element must be == acts.shape[1].

# Let 0 be MASK/PAD value, 1-3 be token ids, and 4 represent RNNT BLANK token
# The BLANK token is overloaded for BOS token as well here, but can be different token.
# Let first sample be padded with 0 (actual length = 3). Loss is computed according to supplied `label_lengths`.
# and gradients for the 4th index onwards (0 based indexing).
labels = torch.tensor([[4, 1, 1, 3, 0], [4, 2, 2, 3, 1]], dtype=torch.int32, device=device)
label_lengths = torch.tensor([3, 4], dtype=torch.int32,
                             device=device)  # Lengths here must be WITHOUT the BOS token.

# If on CUDA, log_softmax is computed internally efficiently (preserving memory and speed)
# Compute it explicitly for CPU, this is done automatically for you inside forward() of the loss.
# -1-th vocab index is RNNT blank token here.
loss_func = warprnnt_numba.RNNTLossNumba(blank=4, reduction='none',
                                         fastemit_lambda=0.0, clamp=0.0)
loss = loss_func(acts, labels, sequence_length, label_lengths)
print("Loss :", loss)
loss.sum().backward()

# When parsing the gradients, look at grads[0] -
# Since it was padded in T (sequence_length=5 < T=8), there are gradients only for grads[0, :5, :, :].
# Since it was padded in U (label_lengths=3+1 < U=5), there are gradeints only for grads[0, :5, :3+1, :].
grads = acts.grad
print("Gradients of activations :")
print(grads)

Tests

Tests will perform CPU only checks if there are no GPUs. If GPUs are present, will run all tests once for cuda:0 as well.

pytest tests/

Requirements

  • pytorch >= 1.10. Older versions might work, not tested.
  • numba - Minimum required version is 0.53.0, preferred is 0.54+.
You might also like...
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Prevent `CUDA error: out of memory` in just 1 line of code.
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

Comments
  • GPU under utilization due to low occupancy.

    GPU under utilization due to low occupancy.

    Thank you for the warprnnt_numba, I got the warnning (show blow) when I use this loss in my code. 1650880807(1) Is this known issue? How can it be debugged and solved?

    Thank you!

    opened by jiay7 2
  • Fix runtime speed

    Fix runtime speed

    Improve runtime speed of numba loss

    • Fix issue with data movement of costs tensor from llForward to pytorch data view in numba
    • This alone costs a linear loop (scaling with batch size) that is roughly 10x the kernel costs themselves.
    • Fix by writing a small kernel to copy the data and update the costs.
    opened by titu1994 0
Releases(v0.4.0)
  • v0.4.0(Jan 30, 2022)

    Supports

    • Simple RNNT loss with Atomic Locks implementation

    Improvements

    • Improve runtime speed of numba loss
      • Fix issue with data movement of costs tensor from llForward to pytorch data view in numba
      • This alone costs a linear loop (scaling with batch size) that is roughly 10x the kernel costs themselves.
      • Fix by writing a small kernel to copy the data and update the costs.
    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Jan 24, 2022)

    Initial release of Warp RNNT loss with Numba JIT compile (CPU/CUDA)

    Supports:

    1. Pytorch RNNT loss (CPU and JIT compiled CUDA)
    2. FastEmit
    3. Gradient clipping
    Source code(tar.gz)
    Source code(zip)
Owner
Somshubra Majumdar
Interested in Machine Learning, Deep Learning and Data Science in general
Somshubra Majumdar
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022