Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Overview

Filtration Curves for Graph Representation

This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation.

Dependencies

We used poetry to manage our dependencies. Once poetry is installed on your computer, navigate to the directory containing this code and type poetry install which will install all of the necessary dependencies (provided in the pyproject.toml file.

Data

We've provided sample data to work with to show how the method works out of the box, provided in the data folder. Our method works with graphs using igraph, and requires that the graphs have an edge weight (e.g., all weights in an igraph graph would be listed using the command graph.es['weight']. The BZR_MD dataset had edge weights already, and therefore we provided the original dataset; the MUTAG dataset did not have edge weights, so the data provided has edge weights added (using the Ricci curvature).

If your graphs do not have an edge weight, there are numerous ways to calculate them, which we detail in the paper. An example of how we added edge weights can be found in the preprocessing/label_edges.py file.

How to run this on your own dataset

To test out our method on your own dataset, create a directory in the data folder with your dataset name, and store each individual graph as an igraph graph (with edge weights) as its own pickle file. Then you can run the commands in the section below, replacing the name of the dataset with the name of the directory you created in the data folder.

Method and Expected Output

In our work, we used two main graph descriptor functions: one using the node label histogram and one tracking the amount of connected components. There is a file for each; but please note that the node label histogram requires that the graph has node labels.

To run the node label histogram filtration curve, navigate to the src folder and type the following command into the terminal:

$ poetry run python node_label_histogram_filtration_curve.py --dataset BZR_MD

This should return the following result in the command line: accuracy: 75.61 +- 1.13.

To run the connected components filtration curve (using the Ricci curvature), navigate to the src folder and type the following command into the terminal:

$ poetry run python connected_components_filtration_curve.py --dataset MUTAG

This should return the following result in the command line: accuracy: 87.31 +- 0.66.

Citing our work

Please use the following BibTeX citation when referencing our work:

@inproceedings{OBray21a,
    title        = {Filtration Curves for Graph Representation},
    author       = {O'Bray, Leslie and Rieck, Bastian and Borgwardt, Karsten},
    doi          = {10.1145/3447548.3467442},
    year         = 2021,
    booktitle    = {Proceedings of the 27th ACM SIGKDD International
                 Conference on Knowledge Discovery \& Data Mining~(KDD)},
    publisher    = {Association for Computing Machinery},
    address      = {New York, NY, USA},
    pubstate     = {inpress},
}
Owner
Machine Learning and Computational Biology Lab
Machine Learning and Computational Biology Lab
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Alex Pashevich 62 Dec 24, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022