Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Overview

Filtration Curves for Graph Representation

This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation.

Dependencies

We used poetry to manage our dependencies. Once poetry is installed on your computer, navigate to the directory containing this code and type poetry install which will install all of the necessary dependencies (provided in the pyproject.toml file.

Data

We've provided sample data to work with to show how the method works out of the box, provided in the data folder. Our method works with graphs using igraph, and requires that the graphs have an edge weight (e.g., all weights in an igraph graph would be listed using the command graph.es['weight']. The BZR_MD dataset had edge weights already, and therefore we provided the original dataset; the MUTAG dataset did not have edge weights, so the data provided has edge weights added (using the Ricci curvature).

If your graphs do not have an edge weight, there are numerous ways to calculate them, which we detail in the paper. An example of how we added edge weights can be found in the preprocessing/label_edges.py file.

How to run this on your own dataset

To test out our method on your own dataset, create a directory in the data folder with your dataset name, and store each individual graph as an igraph graph (with edge weights) as its own pickle file. Then you can run the commands in the section below, replacing the name of the dataset with the name of the directory you created in the data folder.

Method and Expected Output

In our work, we used two main graph descriptor functions: one using the node label histogram and one tracking the amount of connected components. There is a file for each; but please note that the node label histogram requires that the graph has node labels.

To run the node label histogram filtration curve, navigate to the src folder and type the following command into the terminal:

$ poetry run python node_label_histogram_filtration_curve.py --dataset BZR_MD

This should return the following result in the command line: accuracy: 75.61 +- 1.13.

To run the connected components filtration curve (using the Ricci curvature), navigate to the src folder and type the following command into the terminal:

$ poetry run python connected_components_filtration_curve.py --dataset MUTAG

This should return the following result in the command line: accuracy: 87.31 +- 0.66.

Citing our work

Please use the following BibTeX citation when referencing our work:

@inproceedings{OBray21a,
    title        = {Filtration Curves for Graph Representation},
    author       = {O'Bray, Leslie and Rieck, Bastian and Borgwardt, Karsten},
    doi          = {10.1145/3447548.3467442},
    year         = 2021,
    booktitle    = {Proceedings of the 27th ACM SIGKDD International
                 Conference on Knowledge Discovery \& Data Mining~(KDD)},
    publisher    = {Association for Computing Machinery},
    address      = {New York, NY, USA},
    pubstate     = {inpress},
}
Owner
Machine Learning and Computational Biology Lab
Machine Learning and Computational Biology Lab
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022