Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Overview

Filtration Curves for Graph Representation

This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation.

Dependencies

We used poetry to manage our dependencies. Once poetry is installed on your computer, navigate to the directory containing this code and type poetry install which will install all of the necessary dependencies (provided in the pyproject.toml file.

Data

We've provided sample data to work with to show how the method works out of the box, provided in the data folder. Our method works with graphs using igraph, and requires that the graphs have an edge weight (e.g., all weights in an igraph graph would be listed using the command graph.es['weight']. The BZR_MD dataset had edge weights already, and therefore we provided the original dataset; the MUTAG dataset did not have edge weights, so the data provided has edge weights added (using the Ricci curvature).

If your graphs do not have an edge weight, there are numerous ways to calculate them, which we detail in the paper. An example of how we added edge weights can be found in the preprocessing/label_edges.py file.

How to run this on your own dataset

To test out our method on your own dataset, create a directory in the data folder with your dataset name, and store each individual graph as an igraph graph (with edge weights) as its own pickle file. Then you can run the commands in the section below, replacing the name of the dataset with the name of the directory you created in the data folder.

Method and Expected Output

In our work, we used two main graph descriptor functions: one using the node label histogram and one tracking the amount of connected components. There is a file for each; but please note that the node label histogram requires that the graph has node labels.

To run the node label histogram filtration curve, navigate to the src folder and type the following command into the terminal:

$ poetry run python node_label_histogram_filtration_curve.py --dataset BZR_MD

This should return the following result in the command line: accuracy: 75.61 +- 1.13.

To run the connected components filtration curve (using the Ricci curvature), navigate to the src folder and type the following command into the terminal:

$ poetry run python connected_components_filtration_curve.py --dataset MUTAG

This should return the following result in the command line: accuracy: 87.31 +- 0.66.

Citing our work

Please use the following BibTeX citation when referencing our work:

@inproceedings{OBray21a,
    title        = {Filtration Curves for Graph Representation},
    author       = {O'Bray, Leslie and Rieck, Bastian and Borgwardt, Karsten},
    doi          = {10.1145/3447548.3467442},
    year         = 2021,
    booktitle    = {Proceedings of the 27th ACM SIGKDD International
                 Conference on Knowledge Discovery \& Data Mining~(KDD)},
    publisher    = {Association for Computing Machinery},
    address      = {New York, NY, USA},
    pubstate     = {inpress},
}
Owner
Machine Learning and Computational Biology Lab
Machine Learning and Computational Biology Lab
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023