CCCL: Contrastive Cascade Graph Learning.

Overview

CCGL: Contrastive Cascade Graph Learning

This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as described in the paper:

CCGL: Contrastive Cascade Graph Learning
Xovee Xu, Fan Zhou, Kunpeng Zhang, and Siyuan Liu
Submitted for review
arXiv:2107.12576

Dataset

You can download all five datasets (Weibo, Twitter, ACM, APS, and DBLP) via any one of the following links:

Google Drive Dropbox Onedrive Tencent Drive Baidu Netdisk
trqg

Environmental Settings

Our experiments are conducted on Ubuntu 20.04, a single NVIDIA 1080Ti GPU, 48GB RAM, and Intel i7 8700K. CCGL is implemented by Python 3.7, TensorFlow 2.3, Cuda 10.1, and Cudnn 7.6.5.

Create a virtual environment and install GPU-support packages via Anaconda:

# create virtual environment
conda create --name=ccgl python=3.7 cudatoolkit=10.1 cudnn=7.6.5

# activate virtual environment
conda activate ccgl

# install other dependencies
pip install -r requirements.txt

Usage

Here we take Weibo dataset as an example to demonstrate the usage.

Preprocess

Step 1: divide, filter, generate labeled and unlabeled cascades:

cd ccgl
# labeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=False
# unlabeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=True

Step 2: augment both labeled and unlabeled cascades (here we use the AugSIM strategy):

python src/augmentor.py --input=./datasets/weibo/ --aug_strategy=AugSIM

Step 3: generate cascade embeddings:

python src/gene_emb.py --input=./datasets/weibo/ 

Pre-training

python src/pre_training.py --name=weibo-0 --input=./datasets/weibo/ --projection_head=4-1

The saved pre-training model is named as weibo-0.

Fine-tuning

python src/fine_tuning.py --name=weibo-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the pre-trained model weibo-0 and save the teacher network as weibo-0-0.

Distillation

python src/distilling.py --name=weibo-0-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the teacher network weibo-0-0 and save the student network as weibo-0-0-student-0.

(Optional) Run the Base model

python src/base_model.py --input=./datasets/weibo/ 

CCGL model weights

We provide pre-trained, fine-tuned, and distilled CCGL model weights. Please see details in the following table.

Model Dataset Label Fraction Projection Head MSLE Weights
Pre-trained CCGL model Weibo 100% 4-1 - Download
Pre-trained CCGL model Weibo 10% 4-4 - Download
Pre-trained CCGL model Weibo 1% 4-3 - Download
Fine-tuned CCGL model Weibo 100% 4-1 2.70 Download
Fine-tuned CCGL model Weibo 10% 4-4 2.87 Download
Fine-tuned CCGL model Weibo 1% 4-3 3.30 Download

Load weights into the model:

# construct model, carefully check projection head designs:
# use different number of Dense layers
...
# load weights for fine-tuning, distillation, or evaluation
model.load_weights(weight_path)

Check src/fine_tuning.py and src/distilling.py for weights loading examples.

Default hyper-parameter settings

Unless otherwise specified, we use following default hyper-parameter settings.

Param Value Param Value
Augmentation strength 0.1 Pre-training epochs 30
Augmentation strategy AugSIM Projection Head (100%) 4-1
Batch size 64 Projection Head (10%) 4-4
Early stopping patience 20 Projection Head (1%) 4-3
Embedding dimension 64 Model size 128 (4x)
Learning rate 5e-4 Temperature 0.1

Change Logs

  • Jul 21, 2021: fix a bug and some annotations

Cite

If you find our paper & code are useful for your research, please consider citing us 😘 :

@article{xu2021ccgl, 
  author = {Xovee Xu and Fan Zhou and Kunpeng Zhang and Siyuan Liu}, 
  title = {{CCGL}: Contrastive Cascade Graph Learning}, 
  journal = {arXiv:2107.12576},
  year = {2021}, 
}

We also have a survey paper you might be interested:

@article{zhou2021survey,
  author = {Fan Zhou and Xovee Xu and Goce Trajcevski and Kunpeng Zhang}, 
  title = {A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances}, 
  journal = {ACM Computing Surveys (CSUR)}, 
  volume = {54},
  number = {2},
  year = {2021},
  articleno = {27},
  numpages = {36},
  doi = {10.1145/3433000},
}

Acknowledgment

We would like to thank Xiuxiu Qi, Ce Li, Qing Yang, and Wenxiong Li for sharing their computing resources and help us to test the codes. We would also like to show our gratitude to the authors of SimCLR (and Sayak Paul), node2vec, DeepHawkes, and others, for sharing their codes and datasets.

Contact

For any questions please open an issue or drop an email to: xovee at ieee.org

Owner
Xovee Xu
PhD student in UESTC, Chengdu, China.
Xovee Xu
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022