CCCL: Contrastive Cascade Graph Learning.

Overview

CCGL: Contrastive Cascade Graph Learning

This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as described in the paper:

CCGL: Contrastive Cascade Graph Learning
Xovee Xu, Fan Zhou, Kunpeng Zhang, and Siyuan Liu
Submitted for review
arXiv:2107.12576

Dataset

You can download all five datasets (Weibo, Twitter, ACM, APS, and DBLP) via any one of the following links:

Google Drive Dropbox Onedrive Tencent Drive Baidu Netdisk
trqg

Environmental Settings

Our experiments are conducted on Ubuntu 20.04, a single NVIDIA 1080Ti GPU, 48GB RAM, and Intel i7 8700K. CCGL is implemented by Python 3.7, TensorFlow 2.3, Cuda 10.1, and Cudnn 7.6.5.

Create a virtual environment and install GPU-support packages via Anaconda:

# create virtual environment
conda create --name=ccgl python=3.7 cudatoolkit=10.1 cudnn=7.6.5

# activate virtual environment
conda activate ccgl

# install other dependencies
pip install -r requirements.txt

Usage

Here we take Weibo dataset as an example to demonstrate the usage.

Preprocess

Step 1: divide, filter, generate labeled and unlabeled cascades:

cd ccgl
# labeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=False
# unlabeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=True

Step 2: augment both labeled and unlabeled cascades (here we use the AugSIM strategy):

python src/augmentor.py --input=./datasets/weibo/ --aug_strategy=AugSIM

Step 3: generate cascade embeddings:

python src/gene_emb.py --input=./datasets/weibo/ 

Pre-training

python src/pre_training.py --name=weibo-0 --input=./datasets/weibo/ --projection_head=4-1

The saved pre-training model is named as weibo-0.

Fine-tuning

python src/fine_tuning.py --name=weibo-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the pre-trained model weibo-0 and save the teacher network as weibo-0-0.

Distillation

python src/distilling.py --name=weibo-0-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the teacher network weibo-0-0 and save the student network as weibo-0-0-student-0.

(Optional) Run the Base model

python src/base_model.py --input=./datasets/weibo/ 

CCGL model weights

We provide pre-trained, fine-tuned, and distilled CCGL model weights. Please see details in the following table.

Model Dataset Label Fraction Projection Head MSLE Weights
Pre-trained CCGL model Weibo 100% 4-1 - Download
Pre-trained CCGL model Weibo 10% 4-4 - Download
Pre-trained CCGL model Weibo 1% 4-3 - Download
Fine-tuned CCGL model Weibo 100% 4-1 2.70 Download
Fine-tuned CCGL model Weibo 10% 4-4 2.87 Download
Fine-tuned CCGL model Weibo 1% 4-3 3.30 Download

Load weights into the model:

# construct model, carefully check projection head designs:
# use different number of Dense layers
...
# load weights for fine-tuning, distillation, or evaluation
model.load_weights(weight_path)

Check src/fine_tuning.py and src/distilling.py for weights loading examples.

Default hyper-parameter settings

Unless otherwise specified, we use following default hyper-parameter settings.

Param Value Param Value
Augmentation strength 0.1 Pre-training epochs 30
Augmentation strategy AugSIM Projection Head (100%) 4-1
Batch size 64 Projection Head (10%) 4-4
Early stopping patience 20 Projection Head (1%) 4-3
Embedding dimension 64 Model size 128 (4x)
Learning rate 5e-4 Temperature 0.1

Change Logs

  • Jul 21, 2021: fix a bug and some annotations

Cite

If you find our paper & code are useful for your research, please consider citing us 😘 :

@article{xu2021ccgl, 
  author = {Xovee Xu and Fan Zhou and Kunpeng Zhang and Siyuan Liu}, 
  title = {{CCGL}: Contrastive Cascade Graph Learning}, 
  journal = {arXiv:2107.12576},
  year = {2021}, 
}

We also have a survey paper you might be interested:

@article{zhou2021survey,
  author = {Fan Zhou and Xovee Xu and Goce Trajcevski and Kunpeng Zhang}, 
  title = {A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances}, 
  journal = {ACM Computing Surveys (CSUR)}, 
  volume = {54},
  number = {2},
  year = {2021},
  articleno = {27},
  numpages = {36},
  doi = {10.1145/3433000},
}

Acknowledgment

We would like to thank Xiuxiu Qi, Ce Li, Qing Yang, and Wenxiong Li for sharing their computing resources and help us to test the codes. We would also like to show our gratitude to the authors of SimCLR (and Sayak Paul), node2vec, DeepHawkes, and others, for sharing their codes and datasets.

Contact

For any questions please open an issue or drop an email to: xovee at ieee.org

Owner
Xovee Xu
PhD student in UESTC, Chengdu, China.
Xovee Xu
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022