This repository contains the code and models for the following paper.

Overview

DC-ShadowNet

Introduction

This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network. (ICCV'2021) Yeying Jin, Aashish Sharma and Robby T. Tan

Abstract

Shadow removal from a single image is generally still an open problem. Most existing learning-based methods use supervised learning and require a large number of paired images (shadow and corresponding non-shadow images) for training. A recent unsupervised method, Mask-ShadowGAN, addresses this limitation. However, it requires a binary mask to represent shadow regions, making it inapplicable to soft shadows. To address the problem, in this paper, we propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet. Specifically, we propose to integrate a shadow/shadow-free domain classifier into a generator and its discriminator, enabling them to focus on shadow regions. To train our network, we introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness. Moreover, we show that our unsupervised network can be used for test-time training that further improves the results. Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows both quantitatively and qualitatively than the existing state-of-the-art shadow removal methods.

Overview of the proposed method:

Datasets

  1. SRD (please download train and test from the authors). Extracted Shadow Masks in the SRD Dataset

  2. AISTD

  3. LRSS: Soft Shadow Dataset

  4. ISTD

  5. USR: Unpaired Shadow Removal Dataset

Shadow Removal Results:

  1. SDR Dataset DC-ShadowNet Results, All Results

  1. AISTD Dataset DC-ShadowNet Results, All Results

  2. LRSS Soft Shadow Dataset DC-ShadowNet Results, All Results

  3. ISTD Dataset DC-ShadowNet Results

  4. USR Dataset DC-ShadowNet Results

Evaluation

The default root mean squared error (RMSE) evaluation code used by all methods (including ours) actually computes mean absolute error (MAE).

  1. The faster version MAE evaluation code
  2. The original version MAE evaluation code

1.1 SRD Dataset, set the paths of the shadow removal result and the dataset in demo_srd_release.m and then run it.

Get the following Table 1 in the main paper on the SRD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.66 7.70 3.39
Mask-ShadowGAN Unpaired 6.40 11.46 4.29
DSC Paired 4.86 8.81 3.23
DeShadowNet Paired 5.11 3.57 8.82
Gong Prior 12.35 25.43 6.91
Input Image N/A 13.77 37.40 3.96

1.2 AISTD Dataset, set the paths of the shadow removal result and the dataset in demo_aistd_release.m and then run it.

Get the following Table 2 in the main paper on the AISTD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.6 10.3 3.5

1.3 LRSS Soft Shadow Dataset, set the paths of the shadow removal result and the dataset in demo_lrss_release.m and then run it.

Get the following Table 3 in the main paper on the LRSS dataset (size: 256x256).

Method Training All
DC-ShadowNet Unpaired 3.48
Input Image N/A 12.26

Pre-trained Model

  1. Download the pre-trained SRD model, put in results/SRD/model/

  2. Download the pre-trained AISTD model, put in results/AISTD/model/

  3. Download the pre-trained ISTD model, put in results/ISTD/model/

  4. Download the pre-trained USR model, put in results/USR/model/

Test

python main_test.py --dataset SRD --datasetpath YOURPATH --phase test

Results: results/SRD/iteration/outputB

Train

  1. Implement the papers On the removal of shadows from images (TPAMI,05) and Recovery of Chromaticity Image Free from Shadows via Illumination Invariance (ICCV,03)

Directory

  1. Download Datasets and run 1, get the Shadow-Free Chromaticity Maps after Illumination Compensation, and put them in the trainC folder, you should see the following directory structure.
${DC-ShadowNet-Hard-and-Soft-Shadow-Removal}
|-- dataset
    |-- SRD
      |-- trainA ## Shadow 
      |-- trainB ## Shadow-free 
      |-- trainC ## Shadow-Free Chromaticity Maps after Illumination Compensation
      |-- testA  ## Shadow 
      |-- testB  ## Shadow-free 
...
  1. python main.py --dataset SRD --phase train

Shadow-Robust Feature

Get the following Figure 5 in the main paper, VGG feature visualization code is in feature_release folder,

python test_VGGfeatures.py

Results: ./results_VGGfeatures/shadow_VGGfeatures/layernumber/imagenumber/visual_featurenumber_RMSE.jpg

Boundary Smoothness Loss

Get the following Figure 8 in the main paper, shadow boundary code is in boundary_smooth folder,

run getRTVdenMask.m

Results: input_softmask_boundary.jpg

Citation

Please kindly cite our paper if you are using our codes:

Owner
AuAgCu
Computer Vision/ Deep Learning
AuAgCu
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023