PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

Overview

PixelPick

This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

[Project page] [Paper]

Table of contents

Abstract

A central challenge for the task of semantic segmentation is the prohibitive cost of obtaining dense pixel-level annotations to supervise model training. In this work, we show that in order to achieve a good level of segmentation performance, all you need are a few well-chosen pixel labels. We make the following contributions: (i) We investigate the novel semantic segmentation setting in which labels are supplied only at sparse pixel locations, and show that deep neural networks can use a handful of such labels to good effect; (ii) We demonstrate how to exploit this phenomena within an active learning framework, termed PixelPick, to radically reduce labelling cost, and propose an efficient “mouse-free” annotation strategy to implement our approach; (iii) We conduct extensive experiments to study the influence of annotation diversity under a fixed budget, model pretraining, model capacity and the sampling mechanism for picking pixels in this low annotation regime; (iv) We provide comparisons to the existing state of the art in semantic segmentation with active learning, and demonstrate comparable performance with up to two orders of magnitude fewer pixel annotations on the CamVid, Cityscapes and PASCAL VOC 2012 benchmarks; (v) Finally, we evaluate the efficiency of our annotation pipeline and its sensitivity to annotator error to demonstrate its practicality. Our code, models and annotation tool will be made publicly available.

Installation

Prerequisites

Our code is based on Python 3.8 and uses the following Python packages.

torch>=1.8.1
torchvision>=0.9.1
tqdm>=4.59.0
cv2>=4.5.1.48
Clone this repository
git clone https://github.com/NoelShin/PixelPick.git
cd PixelPick
Download dataset

Follow one of the instructions below to download a dataset you are interest in. Then, set the dir_dataset variable in args.py to the directory path which contains the downloaded dataset.

  • For CamVid, you need to download SegNet-Tutorial codebase as a zip file and use CamVid directory which contains images/annotations for training and test after unzipping it. You don't need to change the directory structure. [CamVid]

  • For Cityscapes, first visit the link and login to download. Once downloaded, you need to unzip it. You don't need to change the directory structure. It is worth noting that, if you set downsample variable in args.py (4 by default), it will first downsample train and val images of Cityscapes and store them within {dir_dataset}_d{downsample} folder which will be located in the same directory of dir_dataset. This is to enable a faster dataloading during training. [Cityscapes]

  • For PASCAL VOC 2012, the dataset will be automatically downloaded via torchvision.datasets.VOCSegmentation. You just need to specify which directory you want to download it with dir_dataset variable. If the automatic download fails, you can manually download through the following page (you don't need to untar VOCtrainval_11-May-2012.tar file which will be downloaded). [PASCAL VOC 2012 segmentation]

For more details about the data we used to train/validate our model, please visit datasets directory and find {camvid, cityscapes, voc}_{train, val}.txt file.

Train and validate

By default, the current code validates the model every epoch while training. To train a MobileNetv2-based DeepLabv3+ network, follow the below lines. (The pretrained MobileNetv2 will be loaded automatically.)

cd scripts
sh pixelpick-dl-cv.sh

Benchmark results

For CamVid and Cityscapes, we report the average of 5 different runs and 3 different runs for PASCAL VOC 2012. Please refer to our paper for details. ± one std of mean IoU is denoted.

CamVid
model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 20 (0.012) 50.8 ± 0.2
PixelPick MobileNetv2 40 (0.023) 53.9 ± 0.7
PixelPick MobileNetv2 60 (0.035) 55.3 ± 0.5
PixelPick MobileNetv2 80 (0.046) 55.2 ± 0.7
PixelPick MobileNetv2 100 (0.058) 55.9 ± 0.1
Fully-supervised MobileNetv2 360x480 (100) 58.2 ± 0.6
PixelPick ResNet50 20 (0.012) 59.7 ± 0.9
PixelPick ResNet50 40 (0.023) 62.3 ± 0.5
PixelPick ResNet50 60 (0.035) 64.0 ± 0.3
PixelPick ResNet50 80 (0.046) 64.4 ± 0.6
PixelPick ResNet50 100 (0.058) 65.1 ± 0.3
Fully-supervised ResNet50 360x480 (100) 67.8 ± 0.3
Cityscapes

Note that to make training time manageable, we train on the quarter resolution (256x512) of the original Cityscapes images (1024x2048).

model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 20 (0.015) 52.0 ± 0.6
PixelPick MobileNetv2 40 (0.031) 54.7 ± 0.4
PixelPick MobileNetv2 60 (0.046) 55.5 ± 0.6
PixelPick MobileNetv2 80 (0.061) 56.1 ± 0.3
PixelPick MobileNetv2 100 (0.076) 56.5 ± 0.3
Fully-supervised MobileNetv2 256x512 (100) 61.4 ± 0.5
PixelPick ResNet50 20 (0.015) 56.1 ± 0.4
PixelPick ResNet50 40 (0.031) 60.0 ± 0.3
PixelPick ResNet50 60 (0.046) 61.6 ± 0.4
PixelPick ResNet50 80 (0.061) 62.3 ± 0.4
PixelPick ResNet50 100 (0.076) 62.8 ± 0.4
Fully-supervised ResNet50 256x512 (100) 68.5 ± 0.3
PASCAL VOC 2012
model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 10 (0.009) 51.7 ± 0.2
PixelPick MobileNetv2 20 (0.017) 53.9 ± 0.8
PixelPick MobileNetv2 30 (0.026) 56.7 ± 0.3
PixelPick MobileNetv2 40 (0.034) 56.9 ± 0.7
PixelPick MobileNetv2 50 (0.043) 57.2 ± 0.3
Fully-supervised MobileNetv2 N/A (100) 57.9 ± 0.5
PixelPick ResNet50 10 (0.009) 59.7 ± 0.8
PixelPick ResNet50 20 (0.017) 65.6 ± 0.5
PixelPick ResNet50 30 (0.026) 66.4 ± 0.2
PixelPick ResNet50 40 (0.034) 67.2 ± 0.1
PixelPick ResNet50 50 (0.043) 67.4 ± 0.5
Fully-supervised ResNet50 N/A (100) 69.4 ± 0.3

Models

model dataset backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%) Download
PixelPick CamVid MobileNetv2 100 (0.058) 56.1 Link
PixelPick CamVid ResNet50 100 (0.058) TBU TBU
PixelPick Cityscapes MobileNetv2 100 (0.076) 56.8 Link
PixelPick Cityscapes ResNet50 100 (0.076) 63.3 Link
PixelPick VOC 2012 MobileNetv2 50 (0.043) 57.4 Link
PixelPick VOC 2012 ResNet50 50 (0.043) 68.0 Link

PixelPick mouse-free annotation tool

Code for the annotation tool will be made available.

Citation

To be updated.

Acknowledgements

We borrowed code for the MobileNetv2-based DeepLabv3+ network from https://github.com/Shuai-Xie/DEAL.

If you have any questions, please contact us at {gyungin, weidi, samuel}@robots.ox.ac.uk.

Owner
Gyungin Shin
Serving others
Gyungin Shin
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022