PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

Overview

PixelPick

This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

[Project page] [Paper]

Table of contents

Abstract

A central challenge for the task of semantic segmentation is the prohibitive cost of obtaining dense pixel-level annotations to supervise model training. In this work, we show that in order to achieve a good level of segmentation performance, all you need are a few well-chosen pixel labels. We make the following contributions: (i) We investigate the novel semantic segmentation setting in which labels are supplied only at sparse pixel locations, and show that deep neural networks can use a handful of such labels to good effect; (ii) We demonstrate how to exploit this phenomena within an active learning framework, termed PixelPick, to radically reduce labelling cost, and propose an efficient “mouse-free” annotation strategy to implement our approach; (iii) We conduct extensive experiments to study the influence of annotation diversity under a fixed budget, model pretraining, model capacity and the sampling mechanism for picking pixels in this low annotation regime; (iv) We provide comparisons to the existing state of the art in semantic segmentation with active learning, and demonstrate comparable performance with up to two orders of magnitude fewer pixel annotations on the CamVid, Cityscapes and PASCAL VOC 2012 benchmarks; (v) Finally, we evaluate the efficiency of our annotation pipeline and its sensitivity to annotator error to demonstrate its practicality. Our code, models and annotation tool will be made publicly available.

Installation

Prerequisites

Our code is based on Python 3.8 and uses the following Python packages.

torch>=1.8.1
torchvision>=0.9.1
tqdm>=4.59.0
cv2>=4.5.1.48
Clone this repository
git clone https://github.com/NoelShin/PixelPick.git
cd PixelPick
Download dataset

Follow one of the instructions below to download a dataset you are interest in. Then, set the dir_dataset variable in args.py to the directory path which contains the downloaded dataset.

  • For CamVid, you need to download SegNet-Tutorial codebase as a zip file and use CamVid directory which contains images/annotations for training and test after unzipping it. You don't need to change the directory structure. [CamVid]

  • For Cityscapes, first visit the link and login to download. Once downloaded, you need to unzip it. You don't need to change the directory structure. It is worth noting that, if you set downsample variable in args.py (4 by default), it will first downsample train and val images of Cityscapes and store them within {dir_dataset}_d{downsample} folder which will be located in the same directory of dir_dataset. This is to enable a faster dataloading during training. [Cityscapes]

  • For PASCAL VOC 2012, the dataset will be automatically downloaded via torchvision.datasets.VOCSegmentation. You just need to specify which directory you want to download it with dir_dataset variable. If the automatic download fails, you can manually download through the following page (you don't need to untar VOCtrainval_11-May-2012.tar file which will be downloaded). [PASCAL VOC 2012 segmentation]

For more details about the data we used to train/validate our model, please visit datasets directory and find {camvid, cityscapes, voc}_{train, val}.txt file.

Train and validate

By default, the current code validates the model every epoch while training. To train a MobileNetv2-based DeepLabv3+ network, follow the below lines. (The pretrained MobileNetv2 will be loaded automatically.)

cd scripts
sh pixelpick-dl-cv.sh

Benchmark results

For CamVid and Cityscapes, we report the average of 5 different runs and 3 different runs for PASCAL VOC 2012. Please refer to our paper for details. ± one std of mean IoU is denoted.

CamVid
model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 20 (0.012) 50.8 ± 0.2
PixelPick MobileNetv2 40 (0.023) 53.9 ± 0.7
PixelPick MobileNetv2 60 (0.035) 55.3 ± 0.5
PixelPick MobileNetv2 80 (0.046) 55.2 ± 0.7
PixelPick MobileNetv2 100 (0.058) 55.9 ± 0.1
Fully-supervised MobileNetv2 360x480 (100) 58.2 ± 0.6
PixelPick ResNet50 20 (0.012) 59.7 ± 0.9
PixelPick ResNet50 40 (0.023) 62.3 ± 0.5
PixelPick ResNet50 60 (0.035) 64.0 ± 0.3
PixelPick ResNet50 80 (0.046) 64.4 ± 0.6
PixelPick ResNet50 100 (0.058) 65.1 ± 0.3
Fully-supervised ResNet50 360x480 (100) 67.8 ± 0.3
Cityscapes

Note that to make training time manageable, we train on the quarter resolution (256x512) of the original Cityscapes images (1024x2048).

model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 20 (0.015) 52.0 ± 0.6
PixelPick MobileNetv2 40 (0.031) 54.7 ± 0.4
PixelPick MobileNetv2 60 (0.046) 55.5 ± 0.6
PixelPick MobileNetv2 80 (0.061) 56.1 ± 0.3
PixelPick MobileNetv2 100 (0.076) 56.5 ± 0.3
Fully-supervised MobileNetv2 256x512 (100) 61.4 ± 0.5
PixelPick ResNet50 20 (0.015) 56.1 ± 0.4
PixelPick ResNet50 40 (0.031) 60.0 ± 0.3
PixelPick ResNet50 60 (0.046) 61.6 ± 0.4
PixelPick ResNet50 80 (0.061) 62.3 ± 0.4
PixelPick ResNet50 100 (0.076) 62.8 ± 0.4
Fully-supervised ResNet50 256x512 (100) 68.5 ± 0.3
PASCAL VOC 2012
model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 10 (0.009) 51.7 ± 0.2
PixelPick MobileNetv2 20 (0.017) 53.9 ± 0.8
PixelPick MobileNetv2 30 (0.026) 56.7 ± 0.3
PixelPick MobileNetv2 40 (0.034) 56.9 ± 0.7
PixelPick MobileNetv2 50 (0.043) 57.2 ± 0.3
Fully-supervised MobileNetv2 N/A (100) 57.9 ± 0.5
PixelPick ResNet50 10 (0.009) 59.7 ± 0.8
PixelPick ResNet50 20 (0.017) 65.6 ± 0.5
PixelPick ResNet50 30 (0.026) 66.4 ± 0.2
PixelPick ResNet50 40 (0.034) 67.2 ± 0.1
PixelPick ResNet50 50 (0.043) 67.4 ± 0.5
Fully-supervised ResNet50 N/A (100) 69.4 ± 0.3

Models

model dataset backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%) Download
PixelPick CamVid MobileNetv2 100 (0.058) 56.1 Link
PixelPick CamVid ResNet50 100 (0.058) TBU TBU
PixelPick Cityscapes MobileNetv2 100 (0.076) 56.8 Link
PixelPick Cityscapes ResNet50 100 (0.076) 63.3 Link
PixelPick VOC 2012 MobileNetv2 50 (0.043) 57.4 Link
PixelPick VOC 2012 ResNet50 50 (0.043) 68.0 Link

PixelPick mouse-free annotation tool

Code for the annotation tool will be made available.

Citation

To be updated.

Acknowledgements

We borrowed code for the MobileNetv2-based DeepLabv3+ network from https://github.com/Shuai-Xie/DEAL.

If you have any questions, please contact us at {gyungin, weidi, samuel}@robots.ox.ac.uk.

Owner
Gyungin Shin
Serving others
Gyungin Shin
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022