SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

Overview

SimDeblur

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It is easy to implement your own image or video deblurring or other restoration algorithms.

Major features

  • Modular Design

The toolbox decomposes the deblurring framework into different components and one can easily construct a customized restoration framework by combining different modules.

  • State of the art

The toolbox contains most deep-learning based state-of-the-art deblurring algorithms, including MSCNN, SRN, DeblurGAN, EDVR, etc.

  • Distributed Training

New Features

[2021/3/31] support DVD, GoPro and REDS video deblurring datasets. [2021/3/21] first release.

Surpported Methods and Benchmarks

Dependencies and Installation

  • Python 3 (Conda is recommended)
  • Pytorch 1.5.1 (with GPU)
  • CUDA 10.2+
  1. Clone the repositry or download the zip file
     git clone https://github.com/ljzycmd/SimDeblur.git
    
  2. Install SimDeblur
    # create a pytorch env
    conda create -n simdeblur python=3.7
    conda activate simdeblur   
    # install the packages
    cd SimDeblur
    bash Install.sh

Usage

1 Start with trainer

You can construct a simple training process use the default trainer like following:

from simdeblur.config import build_config, merge_args
from simdeblur.engine.parse_arguments import parse_arguments
from simdeblur.engine.trainer import Trainer


args = parse_arguments()

cfg = build_config(args.config_file)
cfg = merge_args(cfg, args)
cfg.args = args

trainer = Trainer(cfg)
trainer.train()

Then start training with single GPU:

CUDA_VISIBLE_DEVICES=0 bash ./tools/train.sh ./config/dbn/dbn_dvd.yaml 1

multi GPU training:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./tools/train.sh ./config/dbn/dbn_dvd.yaml 4

2 Build each module

The SimDeblur also provides you to build each module. build the a dataset:

from easydict import EasyDict as edict
from simdeblur.dataset import build_dataset

dataset = build_dataset(edict({
    "name": "DVD",
    "mode": "train",
    "sampling": "n_c",
    "overlapping": True,
    "interval": 1,
    "root_gt": "./dataset/DVD/quantitative_datasets",
    "num_frames": 5,
    "augmentation": {
        "RandomCrop": {
            "size": [256, 256] },
        "RandomHorizontalFlip": {
            "p": 0.5 },
        "RandomVerticalFlip": {
            "p": 0.5 },
        "RandomRotation90": {
            "p": 0.5 },
    }
}))

print(dataset[0])

build the model:

from simdeblur.model import build_backbone

model = build_backbone({
    "name": "DBN",
    "num_frames": 5,
    "in_channels": 3,
    "inner_channels": 64
})

x = torch.randn(1, 5, 3, 256, 256)
out = model(x)

build the loss:

from simdeblur.model import build_loss

criterion = build_loss({
    "name": "MSELoss",
})
x = torch.randn(2, 3, 256, 256)
y = torch.randn(2, 3, 256, 256)
print(criterion(x, y))

And the optimizer and lr_scheduler also can be created by "build_optimizer" and "build_lr_scheduler" etc.

Dataset Description

Click here for more information.

Acknowledgment

[1] facebookresearch. detectron2. https://github.com/facebookresearch/detectron2

[2] subeeshvasu. Awesome-Deblurring. https://github.com/subeeshvasu/Awesome-Deblurring

Citations

If SimDeblur helps your research or work, please consider citing SimDeblur.

@misc{cao2021simdeblur,
  author =       {Mingdeng Cao},
  title =        {SimDeblur},
  howpublished = {\url{https://github.com/ljzycmd/SimDeblur}},
  year =         {2021}
}

If you have any question, please contact me at mingdengcao AT gmail.com.

Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022