Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

Overview

1 Meta-FDMIxup

Repository for the paper :

Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021)

paper

News! the representation video loaded in 2021/10/06 in Bilibili

News! the representation video loaded in 2021/10/10 in Youtube

image

If you have any questions, feel free to contact me. My email is [email protected].

2 setup and datasets

2.1 setup

A anaconda envs is recommended:

conda create --name py36 python=3.6
conda activate py36
conda install pytorch torchvision -c pytorch
pip3 install scipy>=1.3.2
pip3 install tensorboardX>=1.4
pip3 install h5py>=2.9.0

Then, git clone our repo:

git clone https://github.com/lovelyqian/Meta-FDMixup
cd Meta-FDMixup

2.2 datasets

Totally five datasets inculding miniImagenet, CUB, Cars, Places, and Plantae are used.

  1. Following FWT-repo to download and setup all datasets. (It can be done quickly)

  2. Remember to modify your own dataset dir in the 'options.py'

  3. Under our new setting, we randomly select $num_{target}$ labeled images from the target base set to form the auxiliary set. The splits we used are provided in 'Sources/'.

3 pretrained ckps

We provide several pretrained ckps.

You can download and put them in the 'output/pretrained_ckps/'

3.1 pretrained model trained on the miniImagenet

3.2 full model meta-trained on the target datasets

Since our method is target-set specific, we have to train a model for each target dataset.

Notably, as we stated in the paper, we use the last checkpoint for target dataset, while the best model on the validation set of miniImagenet is used for miniImagenet. Here, we provide the model of 'miniImagenet|CUB' as an example.

4 usage

4.1 network pretraining

python3 network_train.py --stage pretrain  --name pretrain-model --train_aug 

If you have downloaded our pretrained_model_399.tar, you can just skip this step.

4.2 pretrained model testing

# test source dataset (miniImagenet)
python network_test.py --ckp_path output/checkpoints/pretrain-model/399.tar --stage pretrain --dataset miniImagenet --n_shot 5 

# test target dataset e.g. cub
python network_test.py --ckp_path output/checkpoints/pretrain-model/399.tar --stage pretrain --dataset cub --n_shot 5

you can test our pretrained_model_399.tar in the same way:

# test source dataset (miniImagenet)
python network_test.py --ckp_path output/pretrained_ckps/pretrained_model_399.tar --stage pretrain --dataset miniImagenet --n_shot 5 


# test target dataset e.g. cub
python network_test.py --ckp_path output/pretrained_ckps/pretrained_model_399.tar --stage pretrain --dataset cub --n_shot 5

4.3 network meta-training

# traget set: CUB
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cub --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set cub --n_shot 5

# target set: Cars
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cars --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set cars --n_shot 5

# target set: Places
python3 network_train.py --stage metatrain --name metatrain-model-5shot-places --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set places --n_shot 5

# target set: Plantae
python3 network_train.py --stage metatrain --name metatrain-model-5shot-plantae --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set plantae --n_shot 5

Also, you can use our pretrained_model_399.tar for warmup:

# traget set: CUB
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cub --train_aug --warmup output/pretrained_ckps/pretrained_model_399.tar --target_set cub --n_shot 5

4.4 network testing

To test our provided full models:

# test target dataset (CUB)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cub_399.tar --stage metatrain --dataset cub --n_shot 5 

# test target dataset (Cars)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cars_399.tar --stage metatrain --dataset cars --n_shot 5 

# test target dataset (Places)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_places_399.tar --stage metatrain --dataset places --n_shot 5 

# test target dataset (Plantae)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_places_399.tar --stage metatrain --dataset plantae --n_shot 5 


# test source dataset (miniImagenet|CUB)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cub_best_eval.tar --stage metatrain --dataset miniImagenet --n_shot 5 

To test your models, just modify the 'ckp-path'.

5 citing

If you find our paper or this code useful for your research, please cite us:

@article{fu2021meta,
  title={Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by Labeled Target Data},
  author={Fu, Yuqian and Fu, Yanwei and Jiang, Yu-Gang},
  journal={arXiv preprint arXiv:2107.11978},
  year={2021}
}

6 Note

Notably, our code is built upon the implementation of FWT-repo.

Owner
Fu Yuqian
Fu Yuqian
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaƫl Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022