A Closer Look at Structured Pruning for Neural Network Compression

Overview

A Closer Look at Structured Pruning for Neural Network Compression

Code used to reproduce experiments in https://arxiv.org/abs/1810.04622.

To prune, we fill our networks with custom MaskBlocks, which are manipulated using Pruner in funcs.py. There will certainly be a better way to do this, but we leave this as an exercise to someone who can code much better than we can.

Setup

This is best done in a clean conda environment:

conda create -n prunes python=3.6
conda activate prunes
conda install pytorch torchvision -c pytorch

Repository layout

-train.py: contains all of the code for training large models from scratch and for training pruned models from scratch
-prune.py: contains the code for pruning trained models
-funcs.py: contains useful pruning functions and any functions we used commonly

CIFAR Experiments

First, you will need some initial models.

To train a WRN-40-2:

python train.py --net='res' --depth=40 --width=2.0 --data_loc= --save_file='res'

The default arguments of train.py are suitable for training WRNs. The following trains a DenseNet-BC-100 (k=12) with its default hyperparameters:

python train.py --net='dense' --depth=100 --data_loc= --save_file='dense' --no_epochs 300 -b 64 --epoch_step '[150,225]' --weight_decay 0.0001 --lr_decay_ratio 0.1

These will automatically save checkpoints to the checkpoints folder.

Pruning

Once training is finished, we can prune our networks using prune.py (defaults are set to WRN pruning, so extra arguments are needed for DenseNets)

python prune.py --net='res'   --data_loc= --base_model='res' --save_file='res_fisher'
python prune.py --net='res'   --data_loc= --l1_prune=True --base_model='res' --save_file='res_l1'

python prune.py --net='dense' --depth 100 --data_loc= --base_model='dense' --save_file='dense_fisher' --learning_rate 1e-3 --weight_decay 1e-4 --batch_size 64 --no_epochs 2600
python prune.py --net='dense' --depth 100 --data_loc= --l1_prune=True --base_model='dense' --save_file='dense_l1'  --learning_rate 1e-3 --weight_decay 1e-4 --batch_size 64  --no_epochs 2600

Note that the default is to perform Fisher pruning, so you don't need to pass a flag to use it.
Once finished, we can train the pruned models from scratch, e.g.:

python train.py --data_loc= --net='res' --base_file='res_fisher__prunes' --deploy --mask=1 --save_file='res_fisher__prunes_scratch'

Each model can then be evaluated using:

python train.py --deploy --eval --data_loc= --net='res' --mask=1 --base_file='res_fisher__prunes'

Training Reduced models

This can be done by varying the input arguments to train.py. To reduce depth or width of a WRN, change the corresponding option:

python train.py --net='res' --depth= --width= --data_loc= --save_file='res_reduced'

To add bottlenecks, use the following:

python train.py --net='res' --depth=40 --width=2.0 --data_loc= --save_file='res_bottle' --bottle --bottle_mult 

With DenseNets you can modify the depth or growth, or use --bottle --bottle_mult as above.

Acknowledgements

Jack Turner wrote the L1 stuff, and some other stuff for that matter.

Code has been liberally borrowed from many a repo, including, but not limited to:

https://github.com/xternalz/WideResNet-pytorch
https://github.com/bamos/densenet.pytorch
https://github.com/kuangliu/pytorch-cifar
https://github.com/ShichenLiu/CondenseNet

Citing this work

If you would like to cite this work, please use the following bibtex entry:

@article{crowley2018pruning,
  title={A Closer Look at Structured Pruning for Neural Network Compression},
  author={Crowley, Elliot J and Turner, Jack and Storkey, Amos and O'Boyle, Michael},
  journal={arXiv preprint arXiv:1810.04622},
  year={2018},
  }
Owner
Bayesian and Neural Systems Group
Machine learning research group @ University of Edinburgh
Bayesian and Neural Systems Group
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022