A Closer Look at Structured Pruning for Neural Network Compression

Overview

A Closer Look at Structured Pruning for Neural Network Compression

Code used to reproduce experiments in https://arxiv.org/abs/1810.04622.

To prune, we fill our networks with custom MaskBlocks, which are manipulated using Pruner in funcs.py. There will certainly be a better way to do this, but we leave this as an exercise to someone who can code much better than we can.

Setup

This is best done in a clean conda environment:

conda create -n prunes python=3.6
conda activate prunes
conda install pytorch torchvision -c pytorch

Repository layout

-train.py: contains all of the code for training large models from scratch and for training pruned models from scratch
-prune.py: contains the code for pruning trained models
-funcs.py: contains useful pruning functions and any functions we used commonly

CIFAR Experiments

First, you will need some initial models.

To train a WRN-40-2:

python train.py --net='res' --depth=40 --width=2.0 --data_loc= --save_file='res'

The default arguments of train.py are suitable for training WRNs. The following trains a DenseNet-BC-100 (k=12) with its default hyperparameters:

python train.py --net='dense' --depth=100 --data_loc= --save_file='dense' --no_epochs 300 -b 64 --epoch_step '[150,225]' --weight_decay 0.0001 --lr_decay_ratio 0.1

These will automatically save checkpoints to the checkpoints folder.

Pruning

Once training is finished, we can prune our networks using prune.py (defaults are set to WRN pruning, so extra arguments are needed for DenseNets)

python prune.py --net='res'   --data_loc= --base_model='res' --save_file='res_fisher'
python prune.py --net='res'   --data_loc= --l1_prune=True --base_model='res' --save_file='res_l1'

python prune.py --net='dense' --depth 100 --data_loc= --base_model='dense' --save_file='dense_fisher' --learning_rate 1e-3 --weight_decay 1e-4 --batch_size 64 --no_epochs 2600
python prune.py --net='dense' --depth 100 --data_loc= --l1_prune=True --base_model='dense' --save_file='dense_l1'  --learning_rate 1e-3 --weight_decay 1e-4 --batch_size 64  --no_epochs 2600

Note that the default is to perform Fisher pruning, so you don't need to pass a flag to use it.
Once finished, we can train the pruned models from scratch, e.g.:

python train.py --data_loc= --net='res' --base_file='res_fisher__prunes' --deploy --mask=1 --save_file='res_fisher__prunes_scratch'

Each model can then be evaluated using:

python train.py --deploy --eval --data_loc= --net='res' --mask=1 --base_file='res_fisher__prunes'

Training Reduced models

This can be done by varying the input arguments to train.py. To reduce depth or width of a WRN, change the corresponding option:

python train.py --net='res' --depth= --width= --data_loc= --save_file='res_reduced'

To add bottlenecks, use the following:

python train.py --net='res' --depth=40 --width=2.0 --data_loc= --save_file='res_bottle' --bottle --bottle_mult 

With DenseNets you can modify the depth or growth, or use --bottle --bottle_mult as above.

Acknowledgements

Jack Turner wrote the L1 stuff, and some other stuff for that matter.

Code has been liberally borrowed from many a repo, including, but not limited to:

https://github.com/xternalz/WideResNet-pytorch
https://github.com/bamos/densenet.pytorch
https://github.com/kuangliu/pytorch-cifar
https://github.com/ShichenLiu/CondenseNet

Citing this work

If you would like to cite this work, please use the following bibtex entry:

@article{crowley2018pruning,
  title={A Closer Look at Structured Pruning for Neural Network Compression},
  author={Crowley, Elliot J and Turner, Jack and Storkey, Amos and O'Boyle, Michael},
  journal={arXiv preprint arXiv:1810.04622},
  year={2018},
  }
Owner
Bayesian and Neural Systems Group
Machine learning research group @ University of Edinburgh
Bayesian and Neural Systems Group
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022