This repository contains the source code of our work on designing efficient CNNs for computer vision

Overview

Efficient networks for Computer Vision

This repo contains source code of our work on designing efficient networks for different computer vision tasks: (1) Image classification, (2) Object detection, and (3) Semantic segmentation.

Real-time semantic segmentation using ESPNetv2 on iPhone7. See here for iOS application source code using COREML.
Seg demo on iPhone7 Seg demo on iPhone7
Real-time object detection using ESPNetv2
Demo 1
Demo 2 Demo 3

Table of contents

  1. Key highlihgts
  2. Supported networks
  3. Relevant papers
  4. Blogs
  5. Performance comparison
  6. Training receipe
  7. Instructions for segmentation and detection demos
  8. Citation
  9. License
  10. Acknowledgements
  11. Contributions
  12. Notes

Key highlights

  • Object classification on the ImageNet and MS-COCO (multi-label)
  • Semantic Segmentation on the PASCAL VOC and the CityScapes
  • Object Detection on the PASCAL VOC and the MS-COCO
  • Supports PyTorch 1.0
  • Integrated with Tensorboard for easy visualization of training logs.
  • Scripts for downloading different datasets.
  • Semantic segmentation application using ESPNetv2 on iPhone can be found here.

Supported networks

This repo supports following networks:

  • ESPNetv2 (Classification, Segmentation, Detection)
  • DiCENet (Classification, Segmentation, Detection)
  • ShuffleNetv2 (Classification)

Relevant papers

Blogs

Performance comparison

ImageNet

Below figure compares the performance of DiCENet with other efficient networks on the ImageNet dataset. DiCENet outperforms all existing efficient networks, including MobileNetv2 and ShuffleNetv2. More details here

DiCENet performance on the ImageNet

Object detection

Below table compares the performance of our architecture with other detection networks on the MS-COCO dataset. Our network is fast and accurate. More details here

MSCOCO
Image Size FLOPs mIOU FPS
SSD-VGG 512x512 100 B 26.8 19
YOLOv2 544x544 17.5 B 21.6 40
ESPNetv2-SSD (Ours) 512x512 3.2 B 24.54 35

Semantic Segmentation

Below figure compares the performance of ESPNet and ESPNetv2 on two different datasets. Note that ESPNets are one of the first efficient networks that delivers competitive performance to existing networks on the PASCAL VOC dataset, even with low resolution images say 256x256. See here for more details.

Cityscapes PASCAL VOC 2012
Image Size FLOPs mIOU Image Size FLOPs mIOU
ESPNet 1024x512 4.5 B 60.3 512x512 2.2 B 63
ESPNetv2 1024x512 2.7 B 66.2 384x384 0.76 B 68

Training Receipe

Image Classification

Details about training and testing are provided here.

Details about performance of different models are provided here.

Semantic segmentation

Details about training and testing are provided here.

Details about performance of different models are provided here.

Object Detection

Details about training and testing are provided here.

Details about performance of different models are provided here.

Instructions for segmentation and detection demos

To run the segmentation demo, just type:

python segmentation_demo.py

To run the detection demo, run the following command:

python detection_demo.py

OR 

python detection_demo.py --live

For other supported arguments, please see the corresponding files.

Citation

If you find this repository helpful, please feel free to cite our work:

@article{mehta2019dicenet,
Author = {Sachin Mehta and Hannaneh Hajishirzi and Mohammad Rastegari},
Title = {DiCENet: Dimension-wise Convolutions for Efficient Networks},
Year = {2020},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
}

@inproceedings{mehta2018espnetv2,
  title={ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network},
  author={Mehta, Sachin and Rastegari, Mohammad and Shapiro, Linda and Hajishirzi, Hannaneh},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2019}
}

@inproceedings{mehta2018espnet,
  title={Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation},
  author={Mehta, Sachin and Rastegari, Mohammad and Caspi, Anat and Shapiro, Linda and Hajishirzi, Hannaneh},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={552--568},
  year={2018}
}

License

By downloading this software, you acknowledge that you agree to the terms and conditions given here.

Acknowledgements

Most of our object detection code is adapted from SSD in pytorch. We thank authors for such an amazing work.

Want to help out?

Thanks for your interest in our work :).

Open tasks that are interesting:

  • Tensorflow implementation. I kind of wanna do this but not getting enough time. If you are interested, drop a message and we can talk about it.
  • Optimizing the EESP and the DiceNet block at CUDA-level.
  • Optimize and port pretrained models across multiple mobile platforms, including Android.
  • Other thoughts are also welcome :).

Notes

Notes about DiCENet paper

This repository contains DiCENet's source code in PyTorch only and you should be able to reproduce the results of v1/v2 of our arxiv paper. To reproduce the results of our T-PAMI paper, you need to incorporate MobileNet tricks in Section 5.3, which are currently not a part of this repository.

Owner
Sachin Mehta
Research Scientist at Apple and Affiliate Assistant Professor at UW
Sachin Mehta
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022