Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Overview

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Code for the paper:

Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling", NeurIPS 2021. [arxiv] [bibtex]

Non-Newtonian Momentum Animation:

This repo contains code for implementing Energy Sampling Hamiltonian Dynamics, so-called because the Hamiltonian dynamics with this special form of Non-Newtonian momentum ergodically samples from a target un-normalized density specified by an energy function.

Requirements

The core ESH dynamics sampler code (import esh) uses only PyTorch.

python -m pip install git+https://github.com/gregversteeg/esh_dynamics

Use pip install -r requirements.txt to install requirements for all comparison code.

Usage

Here's a small example where we load a pytorch energy function, then sample Langevin versus ESH trajectories.

import torch as t
import esh  # ESH Dynamics integrator
from esh.datasets import ToyDataset  # Example energy models
from esh.samplers import hmc_integrate  # Sampling comparison methods, like Langevin

# Energy to sample - any pytorch function/module that outputs a scalar per batch item
energy = ToyDataset(toy_type='gmm').energy  # Gaussian mixture model

epsilon = 0.01  # Step size should be < 1
n_steps = 100  # Number of steps to take
x0 = t.tensor([[0., 0.5]])  # Initial state, size (batch_size, ...)
xs, vs, rs = esh.leap_integrate_chain(energy, x0, n_steps, epsilon, store=True)  # "Store" returns whole trajectory
xs_ula, vs_ula, _ = hmc_integrate(energy, x0, n_steps, epsilon=epsilon, k=1, mh_reject=False)  # Unadjusted Langevin Alg

To get just the last state instead of the whole trajectory, set store=False. To do ergodic reservoir sampling, set reservoir=True, store=False.

Generating figures

See the README in the generate_figures for scripts to generate each figure in the paper, and to see more example usage.

BibTeX

@inproceedings{esh,
  title={Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling},
  author={Greg {Ver Steeg} and Aram Galstyan},
  Booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
Owner
Greg Ver Steeg
Research professor at USC
Greg Ver Steeg
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022