FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Related tags

Deep LearningFLSim
Overview

Federated Learning Simulator (FLSim)

Federated Learning Simulator (FLSim) is a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as computer vision and natural text. Currently FLSim supports cross-device FL, where millions of clients' devices (e.g. phones) traing a model collaboratively together.

FLSim is scalable and fast. It supports differential privacy (DP), secure aggregation (secAgg), and variety of compression techniques.

In FL, a model is trained collaboratively by multiple clients that each have their own local data, and a central server moderates training, e.g. by aggregating model updates from multiple clients.

In FLSim, developers only need to define a dataset, model, and metrics reporter. All other aspects of FL training are handled internally by the FLSim core library.

FLSim

Library Structure

FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

Installation

The latest release of FLSim can be installed via pip:

pip install flsim

You can also install directly from the source for the latest features (along with its quirks and potentially ocassional bugs):

git clone https://github.com/facebookresearch/FLSim.git
cd FLSim
pip install -e .

Getting started

To implement a central training loop in the FL setting using FLSim, a developer simply performs the following steps:

  1. Build their own data pipeline to assign individual rows of training data to client devices (to simulate data is distributed across client devices)
  2. Create a corresponding nn/Module model and wrap it in an FL model.
  3. Define a custom metrics reporter that computes and collects metrics of interest (e.g., accuracy) throughout training.
  4. Set the desired hyperparameters in a config.

Usage Example

Tutorials

To see the details, please refer to the tutorials that we have prepared.

Examples

We have prepared the runnable exampels for 2 of the tutorials above:

Contributing

See the CONTRIBUTING for how to contribute to this library.

License

This code is released under Apache 2.0, as found in the LICENSE file.

Comments
  • Bug Fix#36: fix imports in tests.

    Bug Fix#36: fix imports in tests.

    Types of changes

    • [x ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    Bug Fix#36: fix imports in tests.

    How Has This Been Tested (if it applies)

    pytest -ra is able to discover all tests now.

    Checklist

    • [x] The documentation is up-to-date with the changes I made.
    • [x] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [x ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by ghaccount 8
  • Vr

    Vr

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    How Has This Been Tested (if it applies)

    Checklist

    • [ ] The documentation is up-to-date with the changes I made.
    • [ ] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [ ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by JohnlNguyen 6
  • Move optimizer_test_utils to optimizers directory

    Move optimizer_test_utils to optimizers directory

    Summary: it is currently located at the top-level tests directory. However the top-level tests directory does not really make sense as each component is organized into its dedicated directory. optimizer_test_utils.py belongs to the optimizer directory in that sense. In this diff, we move the file to the optimizer directory and fixes the reference.

    Differential Revision: D32241821

    CLA Signed fb-exported Merged 
    opened by jessemin 3
  • Does the backend handle Federated learning asynchronously?

    Does the backend handle Federated learning asynchronously?

    I found this repo from this blog: - https://ai.facebook.com/blog/asynchronous-federated-learning/ However I do not find any mentioning on this repo and also I cannot decipher from the code examples whether this is synchronous version or asynchronous version of Federated learning? Can you please clarify this for me? And also if this is the asynchronous version how can I dive deeper in to the libraries and look at the code of implementation for the asynch handling mechanism?

    Thank you

    opened by 111Kaushal 2
  • Remove test_pytorch_local_dataset_factory

    Remove test_pytorch_local_dataset_factory

    Summary: This test had been very flaky about 1+ year ago an d never been revived since then. Deleting it from the codebase.

    Differential Revision: D32415979

    CLA Signed fb-exported Merged 
    opened by jessemin 2
  • FedSGD with virtual batching

    FedSGD with virtual batching

    šŸš€ Feature

    Motivation

    Create a memory efficient client to run FedSGD. If a client has many examples, running FedSGD (taking the gradient of the model based on all of the client's data) can lead to OOM. In this PR, we fix this problem by still calling optimizer.step once at the end of local training to simulate the effect of FedSGD.>

    opened by JohnlNguyen 0
  • Add Fednova as a benchmark

    Add Fednova as a benchmark

    Summary:

    What?

    Adding FedNova as a benchmark

    Why?

    FedNova is a well known paper that fixes the objective inconsistency problem

    Differential Revision: D34668291

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • Having to `import flsim.configs`  before creating config from json is unintuitive

    Having to `import flsim.configs` before creating config from json is unintuitive

    šŸš€ Feature

    This code works

    import flsim.configs <-- 
    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    This code doesn't work

    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    Motivation

    Having to import flsim.configs is unintuitive and not clear from the user perspective

    Pitch

    Alternatives

    Additional context

    opened by JohnlNguyen 0
  • Fix sent140 example

    Fix sent140 example

    Summary:

    What?

    Fix tutorial to word embedding to resolve the poor accuracy problem

    Why?

    https://github.com/facebookresearch/FLSim/issues/34

    Differential Revision: D34149392

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    ā“ Questions and Help

    Until we move the questions to another medium, feel free to use this as your question:

    Question

    I tried this tutorial https://github.com/facebookresearch/FLSim/blob/main/tutorials/sent140_tutorial.ipynb And accuracy is less that random guess (50%)!

    Any suggestions or approaches to improve accuracy for this tutorial?

    from tutorial: Running (epoch = 1, round = 1, global round = 1) for Test (epoch = 1, round = 1, global round = 1), Loss/Test: 0.8683878255035598 (epoch = 1, round = 1, global round = 1), Accuracy/Test: 49.61439588688946 {'Accuracy': 49.61439588688946}

    opened by ghaccount 0
Releases(v0.1.0)
  • v0.0.1(Dec 9, 2021)

    We are excited to announce the release of FLSim 0.0.1.

    Introduction

    How does one train a machine learning model without access to user data? Federated Learning (FL) is the technology that answers this question. In a nutshell, FL is a way for many users to learn a machine learning model without sharing data collaboratively. The two scenarios for FL, cross-silo and cross-device. Cross-silo provides technologies for collaborative learning between a few large organizations with massive silo datasets. Cross-device provides collaborative learning between many small user devices with small local datasets. Cross-device FL, where millions or even billions of users cooperate on learning a model, is a much more complex problem and attracted less attention from the research community. We designed FLSim to address the cross-device FL use case.

    Federated Learning at Scale

    Large-scale cross-device Federated Learning (FL) is a federated learning paradigm with several challenges that differentiate it from cross-silo FL: millions of clients coordinating with a central server and training instability due to the significant cohort problem. With these challenges in mind, we built FLSim to be scalable while easy to use, and FLSim can scale to thousands of clients per round using only 1 GPU. We hope FLSim will equip researchers to tackle problems with federated learning at scale.

    FLSim

    Library Structure

    FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

    Included Datasets

    Currently, FLSim supports all datasets from LEAF including FEMNIST, Shakespeare, Sent140, CelebA, Synthetic and Reddit. Additionally, we support MNIST and CIFAR-10.

    Included Algorithms

    FLSim supports standard FedAvg, and other federated learning methods such as FedAdam, FedProx, FedAvgM, FedBuff, FedLARS, and FedLAMB.

    Whatā€™s next?

    We hope FLSim will foster large-scale cross-device FL research. Soon, we plan to add support for personalization in early 2022. Throughout 2022, we plan to gather feedback and improve usability. We plan to continue to grow our collection of algorithms, datasets, and models.

    Source code(tar.gz)
    Source code(zip)
Owner
Meta Research
Meta Research
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivasā€ , and Igor M

Kevin Lu 1.4k Jan 07, 2023
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaƫl Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaƫl Defferrard 1.8k Dec 29, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ā € A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

ę—·č§†å¤©å…ƒ MegEngine 9 Mar 14, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Liāˆ—, Sihan M

Jizhizi_Li 212 Dec 27, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022