Apply our monocular depth boosting to your own network!

Overview

MergeNet - Boost Your Own Depth

Boost custom or edited monocular depth maps using MergeNet

Input Original result After manual editing of base
patchselection patchselection patchselection

You can find our Google Colaboratory notebook here. Open In Colab

In this repository, we present a stand-alone implementation of our merging operator we use in our recent work:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Video, Main pdf, Supplementary pdf, Project Page. Github repo.

If you are an artist:

Although we are presenting few simple examples here, both low-resolution and high-resolution depth maps can be freely edited using any program before merging with our method.

Feel free to experiment and share your results with us!

If you are a researcher developing a new (CNN-based) Monocular Depth Estimation method:

This repository is a full implementation of our double-estimation framework. Double estimation uses a base-resolution result and a high-resolution result. The optimum high-resolution for a given image, R20 resolution, depends on the receptive field size of your network (the training resolution is a good approximation) and the image content. The code for R20 computation is also provided here.

To demonstrate the high-resolution performance of your network, you can simply generate the base and high-res estimates on any dataset and use this repository to apply our double estimation method to your own work.

Our Github repo for the main project also includes the implementation of our detail-focused monocular depth performance metric D^3R.

Mix'n'match depths from different networks or use your own custom-edited ones.

In the image below, we show that choosing a different base estimate can improve the depth for the city:

Input Base and details from [MiDaS][1] Base from [LeRes][2] and details from [MiDaS][1]
patchselection patchselection patchselection

To get the optimal result for a given scene, you may want to try multiple methods in both low- and high-resolutions and pick your favourite for each case.

Input Base from [MiDaS v3 / DPT][3] Base from [MiDaS v3 / DPT][3] and details from [MiDaS v2][1]
patchselection patchselection patchselection

Moreover, you can simply edit the base image before merging using any image editing tool for more creative control:

Input Base and details from [MiDaS][1] With edited base from [MiDaS][1]
patchselection patchselection patchselection

How does it work?

merge

This repository lets you combine two input depth maps with certain characteristics.

Low-res base depth

The network uses the base estimate as the main structure of the scene. Typically this is the default-resolution result of a monocular depth estimation network at around 300x300 resolution.

This base estimate is a good candidate for editing due to its low-resolution nature.

Monocular depth estimation methods with geometric consistency optimizations can be used as the base estimation to merge details onto a consistent base.

High-res depth with details

The merging operation transfers the details from this high-resolution depth map onto the structure provided by the low-resolution base pair.

The high-resolution input does not need structural consistency and is typically generated by feeding the input image at a much higher resolution than the training resolution of a given monocular depth estimation network.

You can compute the optimal high-resolution estimation size for a given image using our R20 resolution calculator, also provided in this repository. You can also simply use 2x or 3x resolution to simply add more details.

For more information on this project:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Main pdf, Supplementary pdf, Project Page. Github repo.

video

Citation

This implementation is provided for academic use only. Please cite our paper if you use this code or any of the models.

@INPROCEEDINGS{Miangoleh2021Boosting,
author={S. Mahdi H. Miangoleh and Sebastian Dille and Long Mai and Sylvain Paris and Ya\u{g}{\i}z Aksoy},
title={Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging},
journal={Proc. CVPR},
year={2021},
}

Credits

The "Merge model" code skeleton (./pix2pix folder) was adapted from the [pytorch-CycleGAN-and-pix2pix][4] repository.
[1]: https://github.com/intel-isl/MiDaS/tree/v2
[2]: https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
[3]: https://github.com/isl-org/DPT
[4]: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix \

Owner
Computational Photography Lab @ SFU
Computational Photography Lab at Simon Fraser University, lead by @yaksoy
Computational Photography Lab @ SFU
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022