Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Related tags

Deep LearningXDCC
Overview

Extreme Dynamic Classifier Chains

Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies effectively. However, the classifiers arealigned according to a static order of the labels. In the concept of dynamic classifier chains (DCC) the label ordering is chosen for each prediction dynamically depending on the respective instance at hand. We combine this concept with the boosting of extreme gradient boosted trees (XGBoot), an effective and scalable state-of-the-art technique, and incorporate DCC in a fast multi-label extension of XGBoost which we make publicly available. As only positive labels have to be predicted and these are usually only few, the training costs can be further substantially reduced. Moreover, as experiments on ten datasets show, the length of the chain allows for a more control over the usage of previous predictions and hence over the measure one want to optimize,

Installation

The first step requires to build the modified multilabel version of XGBoost and install the resulting python package to build the dynamic chain model. This requires MinGW, i.e. the mingw32-make command, and Python 3. To start the build run the following commands:

cd XGBoost_ML
mingw32-make -j4

After a successful execution the python package can be installed.

cd python-package
python setup.py install

You should now be able to import the package into your Python project:

import xgboost as xgb

Training the Dynamic Chain Model

We recommend running the models by calling train_dcc.py from within a console. Place all datasets as .arff files into the datasets directory. Append -train to the train set and -test to the test set.

Parameters:

The following parameters are available:

Parameter Short Description Required
--filename <string> -f Name of your dataset .arff file located in the datasets sub-directory yes
--num_labels <int> -l Number of Labels in the dataset yes
--models <string> -m Specifies all models that will be build. Available options:
  • dcc: The proposed dynamic chain model
  • sxgb: A single multilabel XGBoost model
  • cc-dcc: A classifier chain with the label order of a previously built dynamic chain
  • cc-freq: A classifier chain with a label order sorted by label frequency (frequent to rare) in the train set
  • cc-rare: A classifier chain with a label order sorted by label frequency (rare to frequent) in the train set
  • cc-rand: A classifier chain with a random label order
  • br: A binary relevance model
example: -m "dc,br"
yes
--validation <int> -v Size of validation set. The first XX% of the train set will be used for validating the model. If the parameter is not set, the test set will be used for evaluation. Example: --validation 20 The frist 20% will be used for evaluation, the last 80% for training. (default: 0) no
--max_depth <int> -d Max depth of each XGBoost multilabel tree (default: 10) no
--num_rounds <int> -r Number of boosting rounds of each XGBoost model (default: 10) no
--chain_length <int> -c Length of the chain. Represents number of labeling-rounds. Each round builds a new XGBoost model that will predict a single label per instance (default: num_labels) no
--split <int> -s Index of split method used for building the trees. Available options:
  • maxGain: 1
  • maxWeight: 2
  • sumGain: 3
  • sumWeight: 4
  • maxAbsGain: 5
  • sumAbsGain: 6
(default: 1)
no
--parameters <string> -p XGBoost parameters used for each model in the chain. Example: -p "{'silent':1, 'eta':0.1}" (default: {}) no
--features_to_transform <string> -t A list of all features in the dataset that have to be encoded. XGBoost can only process numerical features. Use this parameter to encode categorical features. Example: -t "featureA,featureB" no
--output_extra -o Write extended log and json files (default: True) no

Example

We train two models, the dynamic chain and a binary relevance model, on a dataset called emotions with 6 labels. So we specify the models with -m "dc, br" and the dataset with -f "emotions". Additionally we place the files for training and testing into the datasets directory:

project
│   README.md
│   train_dcc.py   
│
└───datasets
│   │   emotions-train.arff
│   │   emotions-test.arff
│   
└───XGBoost_ML
    │   ...

The dcc model should build a full chain with 6 models, so we use -l 6. All XGBoost models, also the one for binary relevance, should train for 100 rounds with a maximum tree depth of 10 and a step size of 0.1. Therefore we add -p "{'eta':0.1}" -r 100 -d 10

The full command to train and evaluate both models is:

 train_dcc.py -p "{'eta':0.1}" -f "emotions" -l 6 -r 100 -d 10 -c 6 -m 'dcc, br'
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022