Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Related tags

Deep LearningXDCC
Overview

Extreme Dynamic Classifier Chains

Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies effectively. However, the classifiers arealigned according to a static order of the labels. In the concept of dynamic classifier chains (DCC) the label ordering is chosen for each prediction dynamically depending on the respective instance at hand. We combine this concept with the boosting of extreme gradient boosted trees (XGBoot), an effective and scalable state-of-the-art technique, and incorporate DCC in a fast multi-label extension of XGBoost which we make publicly available. As only positive labels have to be predicted and these are usually only few, the training costs can be further substantially reduced. Moreover, as experiments on ten datasets show, the length of the chain allows for a more control over the usage of previous predictions and hence over the measure one want to optimize,

Installation

The first step requires to build the modified multilabel version of XGBoost and install the resulting python package to build the dynamic chain model. This requires MinGW, i.e. the mingw32-make command, and Python 3. To start the build run the following commands:

cd XGBoost_ML
mingw32-make -j4

After a successful execution the python package can be installed.

cd python-package
python setup.py install

You should now be able to import the package into your Python project:

import xgboost as xgb

Training the Dynamic Chain Model

We recommend running the models by calling train_dcc.py from within a console. Place all datasets as .arff files into the datasets directory. Append -train to the train set and -test to the test set.

Parameters:

The following parameters are available:

Parameter Short Description Required
--filename <string> -f Name of your dataset .arff file located in the datasets sub-directory yes
--num_labels <int> -l Number of Labels in the dataset yes
--models <string> -m Specifies all models that will be build. Available options:
  • dcc: The proposed dynamic chain model
  • sxgb: A single multilabel XGBoost model
  • cc-dcc: A classifier chain with the label order of a previously built dynamic chain
  • cc-freq: A classifier chain with a label order sorted by label frequency (frequent to rare) in the train set
  • cc-rare: A classifier chain with a label order sorted by label frequency (rare to frequent) in the train set
  • cc-rand: A classifier chain with a random label order
  • br: A binary relevance model
example: -m "dc,br"
yes
--validation <int> -v Size of validation set. The first XX% of the train set will be used for validating the model. If the parameter is not set, the test set will be used for evaluation. Example: --validation 20 The frist 20% will be used for evaluation, the last 80% for training. (default: 0) no
--max_depth <int> -d Max depth of each XGBoost multilabel tree (default: 10) no
--num_rounds <int> -r Number of boosting rounds of each XGBoost model (default: 10) no
--chain_length <int> -c Length of the chain. Represents number of labeling-rounds. Each round builds a new XGBoost model that will predict a single label per instance (default: num_labels) no
--split <int> -s Index of split method used for building the trees. Available options:
  • maxGain: 1
  • maxWeight: 2
  • sumGain: 3
  • sumWeight: 4
  • maxAbsGain: 5
  • sumAbsGain: 6
(default: 1)
no
--parameters <string> -p XGBoost parameters used for each model in the chain. Example: -p "{'silent':1, 'eta':0.1}" (default: {}) no
--features_to_transform <string> -t A list of all features in the dataset that have to be encoded. XGBoost can only process numerical features. Use this parameter to encode categorical features. Example: -t "featureA,featureB" no
--output_extra -o Write extended log and json files (default: True) no

Example

We train two models, the dynamic chain and a binary relevance model, on a dataset called emotions with 6 labels. So we specify the models with -m "dc, br" and the dataset with -f "emotions". Additionally we place the files for training and testing into the datasets directory:

project
│   README.md
│   train_dcc.py   
│
└───datasets
│   │   emotions-train.arff
│   │   emotions-test.arff
│   
└───XGBoost_ML
    │   ...

The dcc model should build a full chain with 6 models, so we use -l 6. All XGBoost models, also the one for binary relevance, should train for 100 rounds with a maximum tree depth of 10 and a step size of 0.1. Therefore we add -p "{'eta':0.1}" -r 100 -d 10

The full command to train and evaluate both models is:

 train_dcc.py -p "{'eta':0.1}" -f "emotions" -l 6 -r 100 -d 10 -c 6 -m 'dcc, br'
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023