HistoKT: Cross Knowledge Transfer in Computational Pathology

Related tags

Deep LearningHistoKT
Overview

HistoKT: Cross Knowledge Transfer in Computational Pathology

Exciting News! HistoKT has been accepted to ICASSP 2022.

HistoKT: Cross Knowledge Transfer in Computational Pathology,
Ryan Zhang, Jiadai Zhu, Stephen Yang, Mahdi S. Hosseini, Angelo Genovese, Lina Chen, Corwyn Rowsell, Savvas Damaskinos, Sonal Varma, Konstantinos N. Plataniotis
Accepted in 2022 IEEE International Conference on Acourstics, Speech, and Signal Processing (ICASSP2022)

Overview

In computational pathology, the lack of well-annotated datasets obstructs the application of deep learning techniques. Since pathologist time is expensive, dataset curation is intrinsically difficult. Thus, many CPath workflows involve transferring learned knowledge between various image domains through transfer learning. Currently, most transfer learning research follows a model-centric approach, tuning network parameters to improve transfer results over few datasets. In this paper, we take a data-centric approach to the transfer learning problem and examine the existence of generalizable knowledge between histopathological datasets. First, we create a standardization workflow for aggregating existing histopathological data. We then measure inter-domain knowledge by training ResNet18 models across multiple histopathological datasets, and cross-transferring between them to determine the quantity and quality of innate shared knowledge. Additionally, we use weight distillation to share knowledge between models without additional training. We find that hard to learn, multi-class datasets benefit most from pretraining, and a two stage learning framework incorporating a large source domain such as ImageNet allows for better utilization of smaller datasets. Furthermore, we find that weight distillation enables models trained on purely histopathological features to outperform models using external natural image data.

Results

We report our transfer learning using ResNet18 results accross various datasets, with two initialization methods (random and ImageNet initialization). Each item in the matrix represents the Top-1 test accuracy of a ResNet18 model trained on the source dataset and deep-tuned on the target dataset. Items are highlighted in a colour gradient from deep red to deep green, where green represents significant accuracy improvement after tuning, and red represents accuracy decline after tuning.

No Pretraining

ImageNet Initialization

Table of Contents

Getting Started

Dependencies

  • Requirements are specified in requirements.txt
argon2-cffi==20.1.0
async-generator==1.10
attrs==21.2.0
backcall==0.2.0
bleach==3.3.0
cffi==1.14.5
colorama==0.4.4
cycler==0.10.0
decorator==4.4.2
defusedxml==0.7.1
entrypoints==0.3
et-xmlfile==1.1.0
h5py==3.2.1
imageio==2.9.0
ipykernel==5.5.4
ipython==7.23.1
ipython-genutils==0.2.0
ipywidgets==7.6.3
jedi==0.18.0
Jinja2==3.0.0
joblib==1.0.1
jsonschema==3.2.0
jupyter==1.0.0
jupyter-client==6.1.12
jupyter-console==6.4.0
jupyter-core==4.7.1
jupyterlab-pygments==0.1.2
jupyterlab-widgets==1.0.0
kiwisolver==1.3.1
MarkupSafe==2.0.0
matplotlib==3.4.2
matplotlib-inline==0.1.2
mistune==0.8.4
nbclient==0.5.3
nbconvert==6.0.7
nbformat==5.1.3
nest-asyncio==1.5.1
networkx==2.5.1
notebook==6.3.0
numpy==1.20.3
openpyxl==3.0.7
packaging==20.9
pandas==1.2.4
pandocfilters==1.4.3
parso==0.8.2
pickleshare==0.7.5
Pillow==8.2.0
prometheus-client==0.10.1
prompt-toolkit==3.0.18
pyaml==20.4.0
pycparser==2.20
Pygments==2.9.0
pyparsing==2.4.7
pyrsistent==0.17.3
python-dateutil==2.8.1
pytz==2021.1
PyWavelets==1.1.1
pywin32==300
pywinpty==0.5.7
PyYAML==5.4.1
pyzmq==22.0.3
qtconsole==5.1.0
QtPy==1.9.0
scikit-image==0.18.1
scikit-learn==0.24.2
scipy==1.6.3
Send2Trash==1.5.0
six==1.16.0
sklearn==0.0
terminado==0.9.5
testpath==0.4.4
threadpoolctl==2.1.0
tifffile==2021.4.8
torch==1.8.1+cu102
torchaudio==0.8.1
torchvision==0.9.1+cu102
tornado==6.1
traitlets==5.0.5
typing-extensions==3.10.0.0
wcwidth==0.2.5
webencodings==0.5.1
widgetsnbextension==3.5.1

Running the Code

This codebase was created in collaboration with the RMSGD repository. As such, much of the training pipeline is shared.

Downloading datasets

All available datasets can be found on their respective websites. Some datasets, such as ADP, are available by request.

A list of all datasets used in this paper can be found below:

Preprocessing and Training

To prepare datasets for training, please use the functions found in dataset_processing\standardize_datasets.py after downloading all the datasets and placing them all in one folder.

cd HistoKT/dataset_processing
python standardize_datasets.py

A standardized version of each dataset will be created in the dataset folder.

To run the code for training, use the src/adas/train.py file:

cd HistoKT
python src/adas/train.py --config CONFIG --data DATA_FOLDER

Options for Training

--config CONFIG       Set configuration file path: Default = 'configAdas.yaml'
--data DATA           Set data directory path: Default = '.adas-data'
--output OUTPUT       Set output directory path: Default = '.adas-output'
--checkpoint CHECKPOINT
                    Set checkpoint directory path: Default = '.adas-checkpoint'
--resume RESUME       Set checkpoint resume path: Default = None
--pretrained_model PRETRAINED_MODEL
                    Set checkpoint pretrained model path: Default = None
--freeze_encoder FREEZE_ENCODER
                    Set if to freeze encoder for post training: Default = True
--root ROOT           Set root path of project that parents all others: Default = '.'
--save-freq SAVE_FREQ
                    Checkpoint epoch save frequency: Default = 25
--cpu                 Flag: CPU bound training: Default = False
--gpu GPU             GPU id to use: Default = 0
--multiprocessing-distributed
                    Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either   
                    single node or multi node data parallel training: Default = False
--dist-url DIST_URL   url used to set up distributed training:Default = 'tcp://127.0.0.1:23456'
--dist-backend DIST_BACKEND
                    distributed backend: Default = 'nccl'
--world-size WORLD_SIZE
                    Number of nodes for distributed training: Default = -1
--rank RANK           Node rank for distributed training: Default = -1
--color_aug COLOR_AUG
                    override config color augmentation, can also choose "no_aug"
--norm_vals NORM_VALS
                    override normalization values, use dataset string. e.g. "BACH_transformed"

Training Output

All training output will be saved to the OUTPUT_PATH location. After a full experiment, results will be recorded in the following format:

  • OUTPUT
    • Timestamped xlsx sheet with the record of train and validation (notated as test) acc, loss, and rank metrics for each layer in the network (refer to AdaS)
  • CHECKPOINT
    • checkpoint dictionaries with a snapshot of the model's parameters at a given epoch.

Code Organization

Configs

We provide sample configuration files for ResNet18 over all used datasets in configs\NewPretrainingConfigs

These configs were used for training the model on each dataset from random initialization.

All available options can be found in the config files.

Visualization

We provide sample code to plot training curves in Plots

We provide sample code on using the statistical method t-SNE to visualize the high-dimensional features in T-sne.

We provide sample code on using the visual explanation algorithm Grad-CAM heat-maps in gradCAM.

Version History

  • 0.1
    • Initial Release
Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022