Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

Overview

imgbeddings

A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image embeddings, derived from an image model that has seen the entire internet up to mid-2020, can be used for many things: unsupervised clustering (e.g. via umap), embeddings search (e.g. via faiss), and using downstream for other framework-agnostic ML/AI tasks such as building a classifier or calculating image similarity.

  • The embeddings generation models are ONNX INT8-quantized, meaning they're 20-30% faster on the CPU, much smaller on disk, and doesn't require PyTorch or TensorFlow as a dependency!
  • Works for many different image domains thanks to CLIP's zero-shot performance.
  • Includes utilities for using principal component analysis (PCA) to reduces the dimensionality of generated embeddings without losing much info.

Real-World Demo Notebooks

You can read how to use imgbeddings for real-world use cases in these Jupyter Notebooks:

Installation

aitextgen can be installed from PyPI:

pip3 install imgbeddings

Quick Example

Let's say you want to generate an image embedding for a cute cat photo. First you can download the photo:

import requests
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

Then, you can load imgbeddings. By default, imgbeddings will load a 88MB model based on the patch32 variant of CLIP, which separates each image into 49 32x32 patches.

from imgbeddings import imgbeddings
ibed = imgbeddings()

You can also load the patch16 model by passing patch_size = 16 to imgbeddings() (more granular embeddings but takes about 3x longer to run), or the "large" patch14 model with patch_size = 14 (3.5x model size, 3x longer than patch16).

Then to generate embeddings, all you have to is pass the image to to_embeddings()!

embedding = ibed.to_embeddings(image)
embedding[0][0:5] # array([ 0.914541, 0.45988417, 0.0350069 , -0.9054574 , 0.08941309], dtype=float32)

This returns a 768D numpy vector for each input, which can be used for pretty much anything in the ML/AI world. You can also pass a list of filename and/or PIL Images for batch embeddings generation.

See the Demo Notebooks above for more advanced parameters and real-world use cases. More formal documentation will be added soon.

Ethics

The official paper for CLIP explicitly notes that there are inherent biases in the finished model, and that CLIP shouldn't be used in production applications as a result. My perspective is that having better tools free-and-open-source to detect such issues and make it more transparent is an overall good for the future of AI, especially since there are less-public ways to create image embeddings that aren't as accessible. At the least, this package doesn't do anything that wasn't already available when CLIP was open-sourced in January 2021.

If you do use imgbeddings for your own project, I recommend doing a strong QA pass along a diverse set of inputs for your application, which is something you should always be doing whenever you work with machine learning, biased models or not.

imgbeddings is not responsible for malicious misuse of image embeddings.

Design Notes

  • Note that CLIP was trained on square images only, and imgbeddings will pad and resize rectangular images into a square (imgbeddings deliberately does not center crop). As a result, images too wide/tall (e.g. more than a 3:1 ratio of largest dimension to smallest) will not generate robust embeddings.
  • This package only works with image data intentionally as opposed to leveraging CLIP's ability to link image and text. For downstream tasks, using your own text in conjunction with an image will likely give better results. (e.g. if training a model on an image embeddings + text embeddings, feed both and let the model determine the relative importance of each for your use case)

For more miscellaneous design notes, see DESIGN.md.

Maintainer/Creator

Max Woolf (@minimaxir)

Max's open-source projects are supported by his Patreon and GitHub Sponsors. If you found this project helpful, any monetary contributions to the Patreon are appreciated and will be put to good creative use.

See Also

License

MIT

You might also like...
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

 Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Simple image captioning model -  CLIP prefix captioning.
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Comments
  • multiple classes

    multiple classes

    Excuse me, I'm trying to use the work to clustering 4-classes datasets, while I following the instructions in "cat_dogs.ipynb", when using: umap.plot.points, raise a ValueError: "Plotting is currently only implemented for 2D embeddings", I pretty sure I follow the data structure as the repo given. Does it mean it just support binary classes? Thanks a lot~

    opened by CinKKKyo 3
  • Embeddings vary slightly when done in batches vs. single

    Embeddings vary slightly when done in batches vs. single

    import requests
    from PIL import Image
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    image = Image.open(requests.get(url, stream=True).raw)
    
    from imgbeddings import imgbeddings
    ibed = imgbeddings()
    
    embedding = ibed.to_embeddings(image)
    embedding[:, 0:5] 
    
    array([[ 0.914541  ,  0.45988417,  0.0350069 , -0.9054574 ,  0.08941309]],
          dtype=float32)
    
    embedding = ibed.to_embeddings([image]*4)
    embedding[:, 0:5] 
    
    array([[ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635],
           [ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635],
           [ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635],
           [ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635]],
          dtype=float32)
    

    Probably a side effect of ONNX conversion as that's within tolerances. (or a case where intra op is breaking parallelism?)

    bug 
    opened by minimaxir 0
  • Allow imgbeddings to optionally split an image into parts for more robust embeddings

    Allow imgbeddings to optionally split an image into parts for more robust embeddings

    Let's say you want to split the image into quadrants (2 row x 2 col)

    • Run each image as a batch of 4 inputs, with each input representing a quadrant
    • Hstack/contatenate the outputs to create a 768 * 4 vector (3072D)
    • PCA to get it down to a reasonable size to avoid curse-of-dimensionality shenanigans

    This should work since CLIP was trained with center/random cropping so the model should be resilient to subsets.

    Since the outcome of a 2x2 would give a maximum robustness for 448x448 images, which is still low, it may be worth it to scale it up/allow arbitrary segments (e.g. 4x4 for 896x896 images, or rectangular inputs) if the image resolution of the input data is consistent (e.g. 1024x1024 for StyleGAN shenanigans).

    enhancement 
    opened by minimaxir 1
Owner
Max Woolf
Data Scientist @buzzfeed. Plotter of pretty charts.
Max Woolf
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022