Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

Overview

imgbeddings

A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image embeddings, derived from an image model that has seen the entire internet up to mid-2020, can be used for many things: unsupervised clustering (e.g. via umap), embeddings search (e.g. via faiss), and using downstream for other framework-agnostic ML/AI tasks such as building a classifier or calculating image similarity.

  • The embeddings generation models are ONNX INT8-quantized, meaning they're 20-30% faster on the CPU, much smaller on disk, and doesn't require PyTorch or TensorFlow as a dependency!
  • Works for many different image domains thanks to CLIP's zero-shot performance.
  • Includes utilities for using principal component analysis (PCA) to reduces the dimensionality of generated embeddings without losing much info.

Real-World Demo Notebooks

You can read how to use imgbeddings for real-world use cases in these Jupyter Notebooks:

Installation

aitextgen can be installed from PyPI:

pip3 install imgbeddings

Quick Example

Let's say you want to generate an image embedding for a cute cat photo. First you can download the photo:

import requests
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

Then, you can load imgbeddings. By default, imgbeddings will load a 88MB model based on the patch32 variant of CLIP, which separates each image into 49 32x32 patches.

from imgbeddings import imgbeddings
ibed = imgbeddings()

You can also load the patch16 model by passing patch_size = 16 to imgbeddings() (more granular embeddings but takes about 3x longer to run), or the "large" patch14 model with patch_size = 14 (3.5x model size, 3x longer than patch16).

Then to generate embeddings, all you have to is pass the image to to_embeddings()!

embedding = ibed.to_embeddings(image)
embedding[0][0:5] # array([ 0.914541, 0.45988417, 0.0350069 , -0.9054574 , 0.08941309], dtype=float32)

This returns a 768D numpy vector for each input, which can be used for pretty much anything in the ML/AI world. You can also pass a list of filename and/or PIL Images for batch embeddings generation.

See the Demo Notebooks above for more advanced parameters and real-world use cases. More formal documentation will be added soon.

Ethics

The official paper for CLIP explicitly notes that there are inherent biases in the finished model, and that CLIP shouldn't be used in production applications as a result. My perspective is that having better tools free-and-open-source to detect such issues and make it more transparent is an overall good for the future of AI, especially since there are less-public ways to create image embeddings that aren't as accessible. At the least, this package doesn't do anything that wasn't already available when CLIP was open-sourced in January 2021.

If you do use imgbeddings for your own project, I recommend doing a strong QA pass along a diverse set of inputs for your application, which is something you should always be doing whenever you work with machine learning, biased models or not.

imgbeddings is not responsible for malicious misuse of image embeddings.

Design Notes

  • Note that CLIP was trained on square images only, and imgbeddings will pad and resize rectangular images into a square (imgbeddings deliberately does not center crop). As a result, images too wide/tall (e.g. more than a 3:1 ratio of largest dimension to smallest) will not generate robust embeddings.
  • This package only works with image data intentionally as opposed to leveraging CLIP's ability to link image and text. For downstream tasks, using your own text in conjunction with an image will likely give better results. (e.g. if training a model on an image embeddings + text embeddings, feed both and let the model determine the relative importance of each for your use case)

For more miscellaneous design notes, see DESIGN.md.

Maintainer/Creator

Max Woolf (@minimaxir)

Max's open-source projects are supported by his Patreon and GitHub Sponsors. If you found this project helpful, any monetary contributions to the Patreon are appreciated and will be put to good creative use.

See Also

License

MIT

You might also like...
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

 Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Simple image captioning model -  CLIP prefix captioning.
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Comments
  • multiple classes

    multiple classes

    Excuse me, I'm trying to use the work to clustering 4-classes datasets, while I following the instructions in "cat_dogs.ipynb", when using: umap.plot.points, raise a ValueError: "Plotting is currently only implemented for 2D embeddings", I pretty sure I follow the data structure as the repo given. Does it mean it just support binary classes? Thanks a lot~

    opened by CinKKKyo 3
  • Embeddings vary slightly when done in batches vs. single

    Embeddings vary slightly when done in batches vs. single

    import requests
    from PIL import Image
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    image = Image.open(requests.get(url, stream=True).raw)
    
    from imgbeddings import imgbeddings
    ibed = imgbeddings()
    
    embedding = ibed.to_embeddings(image)
    embedding[:, 0:5] 
    
    array([[ 0.914541  ,  0.45988417,  0.0350069 , -0.9054574 ,  0.08941309]],
          dtype=float32)
    
    embedding = ibed.to_embeddings([image]*4)
    embedding[:, 0:5] 
    
    array([[ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635],
           [ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635],
           [ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635],
           [ 0.9133097 ,  0.46032238,  0.03528907, -0.90713847,  0.09063635]],
          dtype=float32)
    

    Probably a side effect of ONNX conversion as that's within tolerances. (or a case where intra op is breaking parallelism?)

    bug 
    opened by minimaxir 0
  • Allow imgbeddings to optionally split an image into parts for more robust embeddings

    Allow imgbeddings to optionally split an image into parts for more robust embeddings

    Let's say you want to split the image into quadrants (2 row x 2 col)

    • Run each image as a batch of 4 inputs, with each input representing a quadrant
    • Hstack/contatenate the outputs to create a 768 * 4 vector (3072D)
    • PCA to get it down to a reasonable size to avoid curse-of-dimensionality shenanigans

    This should work since CLIP was trained with center/random cropping so the model should be resilient to subsets.

    Since the outcome of a 2x2 would give a maximum robustness for 448x448 images, which is still low, it may be worth it to scale it up/allow arbitrary segments (e.g. 4x4 for 896x896 images, or rectangular inputs) if the image resolution of the input data is consistent (e.g. 1024x1024 for StyleGAN shenanigans).

    enhancement 
    opened by minimaxir 1
Owner
Max Woolf
Data Scientist @buzzfeed. Plotter of pretty charts.
Max Woolf
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022