DANet for Tabular data classification/ regression.

Related tags

Deep LearningDANet
Overview

Deep Abstract Networks

A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression.

Brief Introduction

Tabular data are ubiquitous in real world applications. Although many commonly-used neural components (e.g., convolution) and extensible neural networks (e.g., ResNet) have been developed by the machine learning community, few of them were effective for tabular data and few designs were adequately tailored for tabular data structures. In this paper, we propose a novel and flexible neural component for tabular data, called Abstract Layer (AbstLay), which learns to explicitly group correlative input features and generate higher-level features for semantics abstraction. Also, we design a structure re-parameterization method to compress AbstLay, thus reducing the computational complexity by a clear margin in the reference phase. A special basic block is built using AbstLays, and we construct a family of Deep Abstract Networks (DANets) for tabular data classification and regression by stacking such blocks. In DANets, a special shortcut path is introduced to fetch information from raw tabular features, assisting feature interactions across different levels. Comprehensive experiments on real-world tabular datasets show that our AbstLay and DANets are effective for tabular data classification and regression, and the computational complexity is superior to competitive methods.

DANets illustration

DANets

Downloads

Dataset

Download the datasets from the following links:

(Optional) Before starting the program, you may change the file format to .pkl by using svm2pkl() or csv2pkl() functions in ./data/data_util.py.

Weights for inference models

The demo weights for Forest Cover Type dataset is available in the folder "./Weights/".

How to use

Setting

  1. Clone or download this repository, and cd the path.
  2. Build a working python environment. Python 3.7 is fine for this repository.
  3. Install packages following the requirements.txt, e.g., by using pip install -r requirements.txt.

Training

  1. Set the hyperparameters in config files (./config/default.py or ./config/*.yaml).
    Notably, the hyperparameters in .yaml file will cover those in default.py.

  2. Run by python main.py --c [config_path] --g [gpu_id].

    • -c: The config file path
    • -g: GPU device ID
  3. The checkpoint models and best models will be saved at the ./logs file.

Inference

  1. Replace the resume_dir path with the file path containing your trained model/weight.
  2. Run codes by using python predict.py -d [dataset_name] -m [model_file_path] -g [gpu_id].
    • -d: Dataset name
    • -m: Model path for loading
    • -g: GPU device ID

Config Hyperparameters

Normal parameters

  • dataset: str
    The dataset name given must match those in ./data/dataset.py.

  • task: str
    Choose one of the pre-given tasks 'classification' and 'regression'.

  • resume_dir: str
    The log path containing the checkpoint models.

  • logname: str
    The directory names of the models save at ./logs.

  • seed: int
    The random seed.

Model parameters

  • layer: int (default=20)
    Number of abstract layers to stack

  • k: int (default=5)
    Number of masks

  • base_outdim: int (default=64)
    The output feature dimension in abstract layer.

  • drop_rate: float (default=0.1)
    Dropout rate in shortcut module

Fit parameters

  • lr: float (default=0.008)
    Learning rate

  • max_epochs: int (default=5000)
    Maximum number of epochs in training.

  • patience: int (default=1500)
    Number of consecutive epochs without improvement before performing early stopping. If patience is set to 0, then no early stopping will be performed.

  • batch_size: int (default=8192)
    Number of examples per batch.

  • virtual_batch_size: int (default=256)
    Size of the mini batches used for "Ghost Batch Normalization". virtual_batch_size must divide batch_size.

Citations

@inproceedings{danets, 
   title={DANets: Deep Abstract Networks for Tabular Data Classification and Regression}, 
   author={Chen, Jintai and Liao, Kuanlun and Wan, Yao and Chen, Danny Z and Wu, Jian}, 
   booktitle={AAAI}, 
   year={2022}
 }
Owner
Ronnie Rocket
Ronnie Rocket
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
πŸ¦• NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

πŸ¦• nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)β€œ.

Artifact β€’ Reproduce Bugs β€’ Quick Start β€’ Installation β€’ Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN β €β € A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5β€”β€”Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023