Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Overview

Jittor-MLP

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

What's New

Rearrange, Reduce in einops for Jittor is support ! Easier to convert Transformer-based and MLP-based models from PyTorch to Jittor!

  • from .einops_my.layers.jittor import Rearrange, Reduce (shown in ./models_jittor/raft_mlp.py)

Models

  • Jittor and Pytorch implementaion of gMLP

Usage

import jittor as jt
from models_jittor import gMLPForImageClassification as gMLP_jt
from models_jittor import ResMLPForImageClassification as ResMLP_jt
from models_jittor import MLPMixerForImageClassification as MLPMixer_jt
from models_jittor import ViP as ViP_jt
from models_jittor import S2MLPv2 as S2MLPv2_jt
from models_jittor import ConvMixer as ConvMixer_jt
from models_jittor import convmlp_s as ConvMLP_s_jt 
from models_jittor import convmlp_l as ConvMLP_l_jt 
from models_jittor import convmlp_m as ConvMLP_m_jt 
from models_jittor import RaftMLP as RaftMLP_jt

model_jt = MLPMixer_jt(
    image_size=(224,112),
    patch_size=16,
    in_channels=3,
    num_classes=1000,
    d_model=256,
    depth=12,
)

images = jt.randn(8, 3, 224, 224)
with jt.no_grad():
    output = model_jt(images)
print(output.shape) # (8, 1000)

############################################################################

import torch
from models_pytorch import gMLPForImageClassification as gMLP_pt
from models_pytorch import ResMLPForImageClassification as ResMLP_pt
from models_pytorch import MLPMixerForImageClassification as MLPMixer_pt
from models_pytorch import ViP as ViP_pt
from models_pytorch import S2MLPv2 as S2MLPv2_pt 
from models_pytorch import ConvMixer as ConvMixer_pt 
from models_pytorch import convmlp_s as ConvMLP_s_pt 
from models_pytorch import convmlp_l as ConvMLP_l_pt 
from models_pytorch import convmlp_m as ConvMLP_m_pt 
from models_pytorch import RaftMLP as RaftMLP_pt

model_pt = ViP_pt(
    image_size=224,
    patch_size=16,
    in_channels=3,
    num_classes=1000,
    d_model=256,
    depth=30,
    segments = 16,
    weighted = True
)

images = torch.randn(8, 3, 224, 224)

with torch.no_grad():
    output = model_pt(images)
print(output.shape) # (8, 1000)


############################## Non-square images and patch sizes #########################

model_jt = ViP_jt(
    image_size=(224, 112),
    patch_size=(16, 8),
    in_channels=3,
    num_classes=1000,
    d_model=256,
    depth=30,
    segments = 16,
    weighted = True
)
images = jt.randn(8, 3, 224, 112)
with jt.no_grad():
    output = model_jt(images)
print(output.shape) # (8, 1000)

############################## 2 Stages S2MLPv2 #########################
model_pt = S2MLPv2_pt(
    in_channels = 3,
    image_size = (224,224),
    patch_size = [(7,7), (2,2)],
    d_model = [192, 384],
    depth = [4, 14],
    num_classes = 1000, 
    expansion_factor = [3, 3]
)

############################## ConvMLP With Pretrain Params #########################
model_jt = ConvMLP_s_jt(pretrained = True, num_classes = 1000)


############################## RaftMLP #########################
model_jt = RaftMLP_jt(
        layers = [
            {"depth": 12,
            "dim": 768,
            "patch_size": 16,
            "raft_size": 4}
        ],
        gap = True
    )

Citations

@misc{tolstikhin2021mlpmixer,
    title   = {MLP-Mixer: An all-MLP Architecture for Vision},
    author  = {Ilya Tolstikhin and Neil Houlsby and Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Thomas Unterthiner and Jessica Yung and Daniel Keysers and Jakob Uszkoreit and Mario Lucic and Alexey Dosovitskiy},
    year    = {2021},
    eprint  = {2105.01601},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{hou2021vision,
    title   = {Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition},
    author  = {Qibin Hou and Zihang Jiang and Li Yuan and Ming-Ming Cheng and Shuicheng Yan and Jiashi Feng},
    year    = {2021},
    eprint  = {2106.12368},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@article{liu2021pay,
  title={Pay Attention to MLPs},
  author={Liu, Hanxiao and Dai, Zihang and So, David R and Le, Quoc V},
  journal={arXiv preprint arXiv:2105.08050},
  year={2021}
}
@article{touvron2021resmlp,
  title={Resmlp: Feedforward networks for image classification with data-efficient training},
  author={Touvron, Hugo and Bojanowski, Piotr and Caron, Mathilde and Cord, Matthieu and El-Nouby, Alaaeldin and Grave, Edouard and Joulin, Armand and Synnaeve, Gabriel and Verbeek, Jakob and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:2105.03404},
  year={2021}
}
@article{yu2021s,
  title={S $\^{} 2$-MLPv2: Improved Spatial-Shift MLP Architecture for Vision},
  author={Yu, Tan and Li, Xu and Cai, Yunfeng and Sun, Mingming and Li, Ping},
  journal={arXiv preprint arXiv:2108.01072},
  year={2021}
}
@article{li2021convmlp,
  title={ConvMLP: Hierarchical Convolutional MLPs for Vision},
  author={Li, Jiachen and Hassani, Ali and Walton, Steven and Shi, Humphrey},
  journal={arXiv preprint arXiv:2109.04454},
  year={2021}
}
@article{tatsunami2021raftmlp,
  title={RaftMLP: Do MLP-based Models Dream of Winning Over Computer Vision?},
  author={Tatsunami, Yuki and Taki, Masato},
  journal={arXiv preprint arXiv:2108.04384},
  year={2021}
}
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022