The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Related tags

Deep LearningRegSeg
Overview

RegSeg

The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Paper: arxiv

params

D block

DBlock

Decoder

Decoder

Setup

Install the dependencies in requirements.txt by using pip and virtualenv.

Download Cityscapes

go to https://www.cityscapes-dataset.com, create an account, and download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip. You can delete the test images to save some space if you don't want to submit to the competition. Name the directory cityscapes_dataset. Make sure that you have downloaded the required python packages and run

CITYSCAPES_DATASET=cityscapes_dataset csCreateTrainIdLabelImgs

There are 19 classes.

Results from paper

To see the ablation studies results from the paper, go here.

Usage

To visualize your model, go to show.py. To train, validate, benchmark, and save the results of your model, go to train.py.

Results on Cityscapes server

RegSeg (exp48_decoder26, 30FPS): 78.3

Larger RegSeg (exp53_decoder29, 20 FPS): 79.5

Citation

If you find our work helpful, please consider citing our paper.

@article{gao2021rethink,
  title={Rethink Dilated Convolution for Real-time Semantic Segmentation},
  author={Gao, Roland},
  journal={arXiv preprint arXiv:2111.09957},
  year={2021}
}
Comments
  • question about STDC2-Seg75

    question about STDC2-Seg75

    Hi, I note that you benchmark the computation of STDC2-Seg75 which is not reported in the CVPR2021 paper. Did you test the speed of STDC-Seg on your own platform? How about the results?

    opened by ydhongHIT 2
  • Can not show.py

    Can not show.py

    I try show.py. But I can not.

    $ python3 show.py
    name= cityscapes
    train size: 2975
    val size: 500
    Traceback (most recent call last):
      File "show.py", line 358, in <module>
        show_cityscapes_model()
      File "show.py", line 337, in show_cityscapes_model
        show(model,val_loader,device,show_cityscapes_mask,num_images=num_images,skip=skip,images_per_line=images_per_line)
      File "show.py", line 134, in show
        outputs = model(images)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/model.py", line 76, in forward
        x=self.stem(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/blocks.py", line 22, in forward
        x = self.conv(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 446, in forward
        return self._conv_forward(input, self.weight, self.bias)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 442, in _conv_forward
        return F.conv2d(input, weight, bias, self.stride,
    RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    
    opened by sounansu 2
  • The pretrained model link

    The pretrained model link

    Hi, thank you for sharing the code. Can you provide download link about the pretrained model(exp48_decoder26 and exp53_decoder29) in Cityscapes dataset, Thank you very much!

    opened by gaowq2017 1
  • About train bug

    About train bug

    When using seg_transforms.py through your scripts 'camvid_efficientnet_b1_hyperseg-s', there always exsist 'TypeError: resize() got an unexpected keyword argument 'interpolation'' in 174 line. Does this bug only appear in this scripts and should I modify the code when using this scripts?

    opened by 870572761 0
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • About train code

    About train code

    When training, how did the miou and accuracy calculate? On train dataset or validate dataset? I think it's calculated on val dataset due to https://github.com/RolandGao/RegSeg/blob/main/train.py#L238. I trained the base regseg model with config cityscapes_trainval_1000epochs.yam on Cityscapes and got the unbelievable results. 840794c66f23deb33666dcffc4af5b5

    opened by Asthestarsfalll 6
  • confusion on field of view  and model inference time

    confusion on field of view and model inference time

    Hi, RolandGao, nice to see a good job! I see you've done a lot of experiments on the backbone setting, but I still have some confusion after reading your published paper.

    • First, You calculate the fov of 4095 to see the bottom-right pixel when training cityscape (1024x2048), so you have verify the backbone should be exp48 [ (1,1) + (1,2) + 4 * (1, 4) + 7 *(1, 14) ] with fov (3807). But I also find the same backbone when training the CamVid (720x960). Why not use a shallow backbone? I am training my own dataset with image resolution (512 x 512), do I need to modify the backbone architecture? Can you give some advice?
    • Second, I test inference time of regseg. I notice that the speed is not better than other real-time archs due to split and dilated conv even if model costs low GFLOPs. In the application, what we are concerned about is the speed, so is there any strategy to improve the speed?
    opened by LinaShanghaitech 5
  • Why not pretrain on ImageNet?

    Why not pretrain on ImageNet?

    Hi, Thanks for your excellent work ! I notice that RegSeg can achieve a high accuracy on Cityscapes without pretraining. I also did a lot of ablation studies and I think DDRNet will drop around 3% miou if they do not use ImageNet pretraining. How about trying to train your encoder on ImageNet and see what will happen? I really look forward to your result ! Thanks !

    opened by RobinhoodKi 1
Owner
Roland
University of Toronto CS 2023
Roland
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022