Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Overview

Multi-template MRI mouse brain atlas (both in vivo and ex vivo)

DOI

Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the original webpage)

List of atlases

  • FVB_NCrl: Brain MRI atlas of the wild-type FVB_NCrl mouse strain (used as the background strain for the rTg4510 which is a tauopathy model mice express a repressible form of human tau containing the P301L mutation that has been linked with familial frontotemporal dementia.)

  • NeAt: Brain MRI atlas of the whld-type C57BL/6J mouse strain. Atlas was created based on the original MRM NeAt mouse brain atlas (template images reoriented and bias-corrected, left/right structure label seperated, and 4th ventricle manual segmentation added).

  • Tc1 Cerebellum: TC1 mouse cerebellar cortical sublayer lobules.This mouse cerebellar atlas can be used for mouse cerebellar morphometry.

Sample images of atlas

These atlases can be used by the corresponding automatic mouse brain segmentation tools, which can use the in-vivo/ex-vivo atlas here to perform multi-atlas structural parellation based on non-rigid registration and label fusion.

Citation

  • If you use the segmented brain structure, or use the atlas along with the automatic mouse brain MRI segmentation tools, we ask you to kindly cite the following papers:

    • Ma D, Cardoso MJ, Modat M, Powell N, Wells J, Holmes H, Wiseman F, Tybulewicz V, Fisher E, Lythgoe MF, Ourselin S. Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion. PloS one. 2014 Jan 27;9(1):e86576. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086576

    • Ma D, Holmes HE, Cardoso MJ, Modat M, Harrison IF, Powell NM, O'Callaghan J, Ismail O, Johnson RA, O’Neill MJ, Collins EC, Mirza F. Beg, Karteek Popuri, Mark F. Lythgoe, and Sebastien Ourselin Study the longitudinal in vivo and cross-sectional ex vivo brain volume difference for disease progression and treatment effect on mouse model of tauopathy using automated MRI structural parcellation. Frontiers in Neuroscience. 2019;13:11. https://www.frontiersin.org/articles/10.3389/fnins.2019.00011

  • If you use the brain MR images of the FVB_NCrl mouse strain (the wildtype background of rTg4510), we ask you to kindly cite the following papers:

  • If you're using the mouse MRI T2* Active Starining Cerebellar atlas, we ask you to please kindly cite the following papers:

    • Ma, D., Cardoso, M. J., Zuluaga, M. A., Modat, M., Powell, N. M., Wiseman, F. K., Cleary, J. O., Sinclair, B., Harrison, I. F., Siow, B., Popuri, K., Lee, S., Matsubara, J. A., Sarunic, M. V, Beg, M. F., Tybulewicz, V. L. J., Fisher, E. M. C., Lythgoe, M. F., & Ourselin, S. (2020). Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI. NeuroImage, 117271. https://doi.org/https://doi.org/10.1016/j.neuroimage.2020.117271
    • Ma, D., Cardoso, M. J., Zuluaga, M. A., Modat, M., Powell, N., Wiseman, F., Tybulewicz, V., Fisher, E., Lythgoe, M. F., & Ourselin, S. (2015). Grey Matter Sublayer Thickness Estimation in the Mouse Cerebellum. In Medical Image Computing and Computer Assisted Intervention 2015 (pp. 644–651). https://doi.org/10.1007/978-3-319-24574-4_77

Reference

  • For the original information of the NeAt atlas, please please refer to the website: http://brainatlas.mbi.ufl.edu/, and the following two reference papers:
    • Ma Yu, Smith David, Hof Patrick R, Foerster Bernd, Hamilton Scott, Blackband Stephen J, Yu Mei, Benveniste Helene In Vivo 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy. Front. Neuroanat. 2, 1 (2008).
    • Ma Yu, Hof P R, Grant S C, Blackband S J, Bennett R, Slatest L, McGuigan M D, Benveniste H A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135, 1203–15 (2005).

Funding

The works in this repositories received multiple funding from EPSRC, UCL Leonard Wolfson Experimental Neurology center, Medical Research Council (MRC), the NIHR Biomedical Research Unit (Dementia) at UCL and the National Institute for Health Research University College London Hospitals Biomedical Research center, the UK Regenerative Medicine Platform Safety Hub, and the Kings College London and UCL Comprehensive Cancer Imaging center CRUK & EPSRC in association with the MRC and DoH (England), UCL Faculty of Engineering funding scheme, Alzheimer Society Reseasrch Program from Alzheimer Society Canada, NSERC, CIHR, MSFHR Canada, Eli Lilly and Company, Wellcome Trust, the Francis Crick Institute, Cancer Research UK, and University of Melbourne McKenzie Fellowship.

You might also like...
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Code from the paper
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

This repo contains research materials released by members of the Google Brain team in Tokyo.
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Comments
  • NeAt parcellation labels

    NeAt parcellation labels

    @dancebean

    I was looking at the parcellation labels for the NeAt atlas in the docs folder and noticed a discrepancy between structure_label_list.csv and structure_label_list_hemisphere_separated.csv.

    In structure_label_list.csv, lines 23-24 indicate that the right hemispheric ROIs are labeled #1-20. In structure_label_list_hemisphere_separated.csv the right hemisphere is #21-40.

    Can you clarify which is correct?

    opened by araikes 0
Releases(1.0)
  • 1.0(Aug 24, 2020)

    Published along with the journal paper: Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI https://doi.org/10.1016/j.neuroimage.2020.117271

    Source code(tar.gz)
    Source code(zip)
  • 0.2(Nov 14, 2019)

Owner
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022