Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

Overview

SCAI-QReCC-21

[leaderboards] [registration] [forum] [contact] [SCAI]

Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

  • Submission deadline: September 8, 2021 Extended: September 15, 2021
  • Results announcement: September 30, 2021
  • Workshop presentations: October 8, 2021

Data

[Zenodo] [original]

File names here refer to the respective files hosted on [Zenodo].

The passage collection (passages.zip) is 27.5GB with 54M passages!

The input format for the task (scai-qrecc21-[toy,training,test]-questions[,-rewritten].json) is a JSON file:

, "Turn_no": X, "Question": " " }, ... ]">
[
  {
    "Conversation_no": 
    
     ,
    "Turn_no": X,
    "Question": "
     
      "
  }, ...
]

     
    

With X being the number of the question in the conversation. Questions with the same Conversation_no are from the same conversation.

The questions-rewritten.json-files contain human rewritten questions that can be used by systems that do not want to participate in question rewriting.

Submission

Register for the task using this form. We will then send you your TIRA login once it is ready.

The challenge is hosted on TIRA. Participants are encouraged to upload their code and run the evaluation on the VMs provided by the platform to ensure reproducibility of the results. It is also possible to upload the submission as a single JSON file.

The submission format for the task is a JSON file similar to the input (all Model_xxx-fields are optional and you can omit them from the submission, e.g. provide only Conversation_no, Turn_no and Model_answer to get the EM and F1 scores for the generated answers):

, "Turn_no": X, "Model_rewrite": " ", "Model_passages": { " ": , ... }, "Model_answer": " " }, ... ]">
[
  {
    "Conversation_no": 
       
        ,
    "Turn_no": X,
    "Model_rewrite": "
        
         ",
    "Model_passages": { 
      "
         
          ": 
          
           , ...
    },
    "Model_answer": "
           
            " }, ... ] 
           
          
         
        
       

Example: scai-qrecc21-naacl-baseline.zip

You can use the code of our simple baseline to get started.

Software Submission

We recommend participants to upload (through SSH or RDP) their software/system to their dedicated TIRA virtual machine (assigned after registration), so that their runs can be reproduced and so that they can be easily applied to different data (of same format) in the future. The mail send to you after registration gives you the credentials to access the TIRA web interface and your VM. If you cannot connect to your VM, ensure it is powered on in the TIRA web interface.

Your software is expected to accept two arguments:

  • An input directory (named $inputDataset in TIRA) that contains the questions.json input file and passages-index-anserini directory. The latter contains a full Anserini index of the passage collection. Note that you need to install openjdk-11-jdk-headless to use it. We may be able to add more of such indices on request.
  • An output directory (named $outputDir in TIRA) into which your software needs to place the submission as run.json.

Install your software to your VM. Then go to the TIRA web interface and click "Add software". Specify the command to run your software (see the image for the simple baseline).

IMPORTANT: To ensure reproducibility, create a "Software" in the TIRA web interface for each parameter setting that you consider a submission to the challenge.

Click on "Run" to execute your software for the selected input dataset. Your VM will not be accessible while your system is running, be detached from the internet (to ensure your software is fully installed in your virtual machine), and afterwards restored to the state before the run. Since the test set is rather large (the simple baseline takes nearly 11 hours to complete), we highly recommend you first test your software on the scai-qrecc21-toy-dataset-2021-07-20 input dataset. This dataset contains the first conversation (6 turns/questions) only. For the test-dataset, send us a mail at [email protected] so that we unblind your results.

TIRA Interface: VM status and submission

Then go to the "Runs" section below and click on the blue (i)-icon of the software run to check the software output. You can also download the run from there.

NOTE: By submitting your software you retain full copyrights. You agree to grant us usage rights for evaluation of the corresponding data generated by your software. We agree not to share your software with a third party or use it for any purpose other than research.

Run Submission

You can upload a JSON file as a submission at https://www.tira.io/run-upload-scai-qrecc21.

TIRA Interface: VM status and submission

Please specify the name and a description of your run in the form. After a successful upload, the page will redirect you to the overview of all your submissions where you should evaluate your run to verify that your run is valid. At the "Runs" section, you can click on the blue (i)-icon to double-check your upload. You can also download the run from there.

Evaluation

[script]

Once you run your software or uploaded your run, "Run" the evaluator on that run through the TIRA web interface (below the software; works out-of-the-box).

TIRA Interface: Evaluation

Then go to the "Runs" section below and click on the blue (i)-icon of the evaluator run to see your scores.

Ground truth

We use the QReCC paper annotations in the initial phase, and will update them with alternative answer spans and passages by pooling and crowdsourcing the relevance judgements over the results submitted by the challenge participants (similar to the TREC evaluation setup).

Metrics

We use the same metrics as the QReCC paper, but may add more for the final evaluation: ROUGE1-R for question rewriting, Mean Reciprocal Rank (MRR) for passage retrieval, and F1 and Exact Match for question answering.

Baselines

We provide the following baselines for comparison:

  • scai-qrecc21-simple-baseline: BM25 baseline for passage retrieval using original conversational questions without rewriting. We recommend to use this code as a boilerplate to kickstart your own submission using the VM.
  • scai-qrecc21-naacl-baseline: results for the end-to-end approach using supervised question rewriting and QA models reported in the QReCC paper (accepted at NAACL'21). This sample run is available on Zenodo as scai-qrecc21-naacl-baseline.zip.

Note that the baseline results differ from the ones reported in the paper since we made several corrections to the evaluation script and the ground truth annotations:

  • We excluded the samples for which the ground truth is missing from the evaluation (i.e., no relevant passages or no answer text or no rewrite provided by the human annotators)

  • We removed 5,251 passages judgements annotated by the heuristic as relevant for the short answers with lengths <= 5 since these matches are often trivial and unrelated, e.g., the same noun phrase appearing in different contexts.

Resources

Some useful links to get you started on a new conversational open-domain QA system:

Conversational Passage Retrieval

Answer Generation

Passage Retrieval

Conversational Question Reformulation

HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022