Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

Overview

SCAI-QReCC-21

[leaderboards] [registration] [forum] [contact] [SCAI]

Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

  • Submission deadline: September 8, 2021 Extended: September 15, 2021
  • Results announcement: September 30, 2021
  • Workshop presentations: October 8, 2021

Data

[Zenodo] [original]

File names here refer to the respective files hosted on [Zenodo].

The passage collection (passages.zip) is 27.5GB with 54M passages!

The input format for the task (scai-qrecc21-[toy,training,test]-questions[,-rewritten].json) is a JSON file:

, "Turn_no": X, "Question": " " }, ... ]">
[
  {
    "Conversation_no": 
    
     ,
    "Turn_no": X,
    "Question": "
     
      "
  }, ...
]

     
    

With X being the number of the question in the conversation. Questions with the same Conversation_no are from the same conversation.

The questions-rewritten.json-files contain human rewritten questions that can be used by systems that do not want to participate in question rewriting.

Submission

Register for the task using this form. We will then send you your TIRA login once it is ready.

The challenge is hosted on TIRA. Participants are encouraged to upload their code and run the evaluation on the VMs provided by the platform to ensure reproducibility of the results. It is also possible to upload the submission as a single JSON file.

The submission format for the task is a JSON file similar to the input (all Model_xxx-fields are optional and you can omit them from the submission, e.g. provide only Conversation_no, Turn_no and Model_answer to get the EM and F1 scores for the generated answers):

, "Turn_no": X, "Model_rewrite": " ", "Model_passages": { " ": , ... }, "Model_answer": " " }, ... ]">
[
  {
    "Conversation_no": 
       
        ,
    "Turn_no": X,
    "Model_rewrite": "
        
         ",
    "Model_passages": { 
      "
         
          ": 
          
           , ...
    },
    "Model_answer": "
           
            " }, ... ] 
           
          
         
        
       

Example: scai-qrecc21-naacl-baseline.zip

You can use the code of our simple baseline to get started.

Software Submission

We recommend participants to upload (through SSH or RDP) their software/system to their dedicated TIRA virtual machine (assigned after registration), so that their runs can be reproduced and so that they can be easily applied to different data (of same format) in the future. The mail send to you after registration gives you the credentials to access the TIRA web interface and your VM. If you cannot connect to your VM, ensure it is powered on in the TIRA web interface.

Your software is expected to accept two arguments:

  • An input directory (named $inputDataset in TIRA) that contains the questions.json input file and passages-index-anserini directory. The latter contains a full Anserini index of the passage collection. Note that you need to install openjdk-11-jdk-headless to use it. We may be able to add more of such indices on request.
  • An output directory (named $outputDir in TIRA) into which your software needs to place the submission as run.json.

Install your software to your VM. Then go to the TIRA web interface and click "Add software". Specify the command to run your software (see the image for the simple baseline).

IMPORTANT: To ensure reproducibility, create a "Software" in the TIRA web interface for each parameter setting that you consider a submission to the challenge.

Click on "Run" to execute your software for the selected input dataset. Your VM will not be accessible while your system is running, be detached from the internet (to ensure your software is fully installed in your virtual machine), and afterwards restored to the state before the run. Since the test set is rather large (the simple baseline takes nearly 11 hours to complete), we highly recommend you first test your software on the scai-qrecc21-toy-dataset-2021-07-20 input dataset. This dataset contains the first conversation (6 turns/questions) only. For the test-dataset, send us a mail at [email protected] so that we unblind your results.

TIRA Interface: VM status and submission

Then go to the "Runs" section below and click on the blue (i)-icon of the software run to check the software output. You can also download the run from there.

NOTE: By submitting your software you retain full copyrights. You agree to grant us usage rights for evaluation of the corresponding data generated by your software. We agree not to share your software with a third party or use it for any purpose other than research.

Run Submission

You can upload a JSON file as a submission at https://www.tira.io/run-upload-scai-qrecc21.

TIRA Interface: VM status and submission

Please specify the name and a description of your run in the form. After a successful upload, the page will redirect you to the overview of all your submissions where you should evaluate your run to verify that your run is valid. At the "Runs" section, you can click on the blue (i)-icon to double-check your upload. You can also download the run from there.

Evaluation

[script]

Once you run your software or uploaded your run, "Run" the evaluator on that run through the TIRA web interface (below the software; works out-of-the-box).

TIRA Interface: Evaluation

Then go to the "Runs" section below and click on the blue (i)-icon of the evaluator run to see your scores.

Ground truth

We use the QReCC paper annotations in the initial phase, and will update them with alternative answer spans and passages by pooling and crowdsourcing the relevance judgements over the results submitted by the challenge participants (similar to the TREC evaluation setup).

Metrics

We use the same metrics as the QReCC paper, but may add more for the final evaluation: ROUGE1-R for question rewriting, Mean Reciprocal Rank (MRR) for passage retrieval, and F1 and Exact Match for question answering.

Baselines

We provide the following baselines for comparison:

  • scai-qrecc21-simple-baseline: BM25 baseline for passage retrieval using original conversational questions without rewriting. We recommend to use this code as a boilerplate to kickstart your own submission using the VM.
  • scai-qrecc21-naacl-baseline: results for the end-to-end approach using supervised question rewriting and QA models reported in the QReCC paper (accepted at NAACL'21). This sample run is available on Zenodo as scai-qrecc21-naacl-baseline.zip.

Note that the baseline results differ from the ones reported in the paper since we made several corrections to the evaluation script and the ground truth annotations:

  • We excluded the samples for which the ground truth is missing from the evaluation (i.e., no relevant passages or no answer text or no rewrite provided by the human annotators)

  • We removed 5,251 passages judgements annotated by the heuristic as relevant for the short answers with lengths <= 5 since these matches are often trivial and unrelated, e.g., the same noun phrase appearing in different contexts.

Resources

Some useful links to get you started on a new conversational open-domain QA system:

Conversational Passage Retrieval

Answer Generation

Passage Retrieval

Conversational Question Reformulation

Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022