Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

Overview

extrinsic2pyramid

Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

img

Intro

A very simple and straightforward module for visualizing camera pose on 3D space. This module just have a only utility, as like its name, to convert extrinsic camera parameter(transform matrix) to visual 3D square pyramid, the pyramid's vertex not on the base side(square) is the camera's focal point and The optical axis passes through the focal point and the center of the base.

Note that, this module do not contain any calibration algorithm. It's just for visualizing calibrated parameter.

Requirements

numpy >= 1.2

numpy-quaternion

matplotlib

glob

Trouble Shooting

ImportError: numpy.core.multiarray failed to import

conda install -c conda-forge quaternion

Usage

To visualize extrinsic camera parameters, the only module you need to import is, 'CameraPoseVisualizer' from 'util.camera_pose_visualizer'

from util.camera_pose_visualizer import CameraPoseVisualizer

Initialize visualizer with 3 argument, the limit of visually plotted space.(the minimum/maximum value of x, y, z)

visualizer = CameraPoseVisualizer([-50, 50], [-50, 50], [0, 100])

Conver extrinsic matrix with visualizer. it has 3 argument, extrinsic matrix, color of pyramid, scale of pyramid. The color of pyramid can be both represented as a character like 'r', 'c', 'k', and represented as RGBa sequence.

visualizer.extrinsic2pyramid(np.eye(4), 'c', 10)

... That's all about this module. There are other python packages that can visualize camera pose on visual 3D space and even have more utilities, but, For who just want to visualize camera pose and do not want to spend time to learn NEW BIG multi-purpose 3D graphical library, for example, for SLAM Engineer who just want to qualitatively overview his localization result, or for 3D Machine Learning Engineer who just want to visually overview geometric constraint of new data before preprocess it, This Module can be a quite reasonable choice.

The core source-code of this module is just about-50-lines(not importing any other non-basic sub-module). About-50-line is all you need to grasp this module, that means, easy to be merged to your project, and easy to be a base-module for more complex architecture(see demo2.py).

Dataset

The sample camera parameters in dataset directory is from YCB-M Dataset [1]. The data hierarchy used in this dataset is one of a standard hierarchy that, in particular, almost of NVIDIA's open-sources support. And this dataset share its hierarchy with other datasets like, YCB-VIDEO[2] and FAT[3].

Demo

demo1.py

In fact, just 11-lines of demo1.py is all about the usage of this module.

img

demo2.py

This script is a example that manipulate this module for more complex architecture. Frankly, I made this module as a visualizing tool to visually analyze camera trajectory of YCB-M dataset before numerically preprocess it. I need indoor scenarios which have these constraints, 1.fixed multiple view cameras and we know its parameters. 2.cameras maintain same pose along all scenes. But there is a no dataset perfectly match with these. So, i have to search other scenarios. The alternative scenario i found is that, 1.static scene, 2.moving camera, 3.but along the scenes, there must be at least 4 point, which most of camera-trajectory from different scenes intersect(and camera-pose at that points are similar). Picking up intersecting points and Using them as like fixed multiple view cameras will quite work well for me. But before preprocess it in earnest. By watching trajectory scene-wisely and frame-wisely, I can make a rough estimate and a intuition about the posibility whether this dataset can pass the constraint-3.

img

The colors represent different scenes.

img

The distribution of color represents different frames.

Roadmap

Utility that can toggle trajectory scene-wisely or frame-wisely.

GUI Interface.

References

[1] T. Grenzdörffer, M. Günther, and J. Hertzberg, "YCB-M: A Multi-Camera RGB-D Dataset for Object Recognition and 6DoF Pose Estimation".

[2] Y. Xiang, T. Schmidt, V. Narayanan and D. Fox. "PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes".

[3] J. Tremblay, T. To, and S. Birchfield, Falling Things: "A Synthetic Dataset for 3D Object Detection and Pose Estimation".

Owner
JEONG HYEONJIN
Research Interest : 3D Computer Vision (3D Multiple Object Tracking, 3D Reconstruction, Multi-View Image Geometry, 3D Human Motion Recognition, Sensor Fusion)
JEONG HYEONJIN
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020