Tensorflow 2 implementation of our high quality frame interpolation neural network

Overview

FILM: Frame Interpolation for Large Scene Motion

Project | Paper | YouTube | Benchmark Scores

Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn't use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone.

FILM: Frame Interpolation for Large Motion
Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, Brian Curless
Google Research
Technical Report 2022.

A sample 2 seconds moment. FILM transforms near-duplicate photos into a slow motion footage that look like it is shot with a video camera.

Installation

  • Get Frame Interpolation source codes
> git clone https://github.com/google-research/frame-interpolation frame_interpolation
  • Optionally, pull the recommended Docker base image
> docker pull gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
  • Install dependencies
> pip install -r frame_interpolation/requirements.txt
> apt-get install ffmpeg

Pre-trained Models

  • Create a directory where you can keep large files. Ideally, not in this directory.
> mkdir 
   

   
  • Download pre-trained TF2 Saved Models from google drive and put into .

The downloaded folder should have the following structure:

pretrained_models/
├── film_net/
│   ├── L1/
│   ├── VGG/
│   ├── Style/
├── vgg/
│   ├── imagenet-vgg-verydeep-19.mat

Running the Codes

The following instructions run the interpolator on the photos provided in frame_interpolation/photos.

One mid-frame interpolation

To generate an intermediate photo from the input near-duplicate photos, simply run:

> python3 -m frame_interpolation.eval.interpolator_test \
     --frame1 frame_interpolation/photos/one.png \
     --frame2 frame_interpolation/photos/two.png \
     --model_path 
   
    /film_net/Style/saved_model \
     --output_frame frame_interpolation/photos/middle.png \

   

This will produce the sub-frame at t=0.5 and save as 'frame_interpolation/photos/middle.png'.

Many in-between frames interpolation

Takes in a set of directories identified by a glob (--pattern). Each directory is expected to contain at least two input frames, with each contiguous frame pair treated as an input to generate in-between frames.

/film_net/Style/saved_model \ --times_to_interpolate 6 \ --output_video">
> python3 -m frame_interpolation.eval.interpolator_cli \
     --pattern "frame_interpolation/photos" \
     --model_path 
   
    /film_net/Style/saved_model \
     --times_to_interpolate 6 \
     --output_video

   

You will find the interpolated frames (including the input frames) in 'frame_interpolation/photos/interpolated_frames/', and the interpolated video at 'frame_interpolation/photos/interpolated.mp4'.

The number of frames is determined by --times_to_interpolate, which controls the number of times the frame interpolator is invoked. When the number of frames in a directory is 2, the number of output frames will be 2^times_to_interpolate+1.

Datasets

We use Vimeo-90K as our main training dataset. For quantitative evaluations, we rely on commonly used benchmark datasets, specifically:

Creating a TFRecord

The training and benchmark evaluation scripts expect the frame triplets in the TFRecord storage format.

We have included scripts that encode the relevant frame triplets into a tf.train.Example data format, and export to a TFRecord file.

You can use the commands python3 -m frame_interpolation.datasets.create_ _tfrecord --help for more information.

For example, run the command below to create a TFRecord for the Middlebury-other dataset. Download the images and point --input_dir to the unzipped folder path.

> python3 -m frame_interpolation.datasets.create_middlebury_tfrecord \
    --input_dir=
   
     \
    --output_tfrecord_filepath=
    

   

Training

Below are our training gin configuration files for the different loss function:

frame_interpolation/training/
├── config/
│   ├── film_net-L1.gin
│   ├── film_net-VGG.gin
│   ├── film_net-Style.gin

To launch a training, simply pass the configuration filepath to the desired experiment.
By default, it uses all visible GPUs for training. To debug or train on a CPU, append --mode cpu.

> python3 -m frame_interpolation.training.train \
     --gin_config frame_interpolation/training/config/
   
    .gin \
     --base_folder 
     \
     --label 
    

    
   
  • When training finishes, the folder structure will look like this:

   
    /
├── 
    
   

Build a SavedModel

Optionally, to build a SavedModel format from a trained checkpoints folder, you can use this command:

> python3 -m frame_interpolation.training.build_saved_model_cli \
     --base_folder  \
     --label 
   

   
  • By default, a SavedModel is created when the training loop ends, and it will be saved at / .

Evaluation on Benchmarks

Below, we provided the evaluation gin configuration files for the benchmarks we have considered:

frame_interpolation/eval/
├── config/
│   ├── middlebury.gin
│   ├── ucf101.gin
│   ├── vimeo_90K.gin
│   ├── xiph_2K.gin
│   ├── xiph_4K.gin

To run an evaluation, simply pass the configuration file of the desired evaluation dataset.
If a GPU is visible, it runs on it.

> python3 -m frame_interpolation.eval.eval_cli -- \
     --gin_config frame_interpolation/eval/config/
   
    .gin \
     --model_path 
    
     /film_net/L1/saved_model

    
   

The above command will produce the PSNR and SSIM scores presented in the paper.

Citation

If you find this implementation useful in your works, please acknowledge it appropriately by citing:

@inproceedings{reda2022film,
 title = {Frame Interpolation for Large Motion},
 author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
 booktitle = {arXiv},
 year = {2022}
}
@misc{film-tf,
  title = {Tensorflow 2 Implementation of "FILM: Frame Interpolation for Large Scene Motion"},
  author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/frame-interpolation}}
}

Contact: Fitsum Reda ([email protected])

Acknowledgments

We would like to thank Richard Tucker, Jason Lai and David Minnen. We would also like to thank Jamie Aspinall for the imagery included in this repository.

Coding style

  • 2 spaces for indentation
  • 80 character line length
  • PEP8 formatting

Disclaimer

This is not an officially supported Google product.

Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023