Tensorflow 2 implementation of our high quality frame interpolation neural network

Overview

FILM: Frame Interpolation for Large Scene Motion

Project | Paper | YouTube | Benchmark Scores

Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn't use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone.

FILM: Frame Interpolation for Large Motion
Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, Brian Curless
Google Research
Technical Report 2022.

A sample 2 seconds moment. FILM transforms near-duplicate photos into a slow motion footage that look like it is shot with a video camera.

Installation

  • Get Frame Interpolation source codes
> git clone https://github.com/google-research/frame-interpolation frame_interpolation
  • Optionally, pull the recommended Docker base image
> docker pull gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
  • Install dependencies
> pip install -r frame_interpolation/requirements.txt
> apt-get install ffmpeg

Pre-trained Models

  • Create a directory where you can keep large files. Ideally, not in this directory.
> mkdir 
   

   
  • Download pre-trained TF2 Saved Models from google drive and put into .

The downloaded folder should have the following structure:

pretrained_models/
├── film_net/
│   ├── L1/
│   ├── VGG/
│   ├── Style/
├── vgg/
│   ├── imagenet-vgg-verydeep-19.mat

Running the Codes

The following instructions run the interpolator on the photos provided in frame_interpolation/photos.

One mid-frame interpolation

To generate an intermediate photo from the input near-duplicate photos, simply run:

> python3 -m frame_interpolation.eval.interpolator_test \
     --frame1 frame_interpolation/photos/one.png \
     --frame2 frame_interpolation/photos/two.png \
     --model_path 
   
    /film_net/Style/saved_model \
     --output_frame frame_interpolation/photos/middle.png \

   

This will produce the sub-frame at t=0.5 and save as 'frame_interpolation/photos/middle.png'.

Many in-between frames interpolation

Takes in a set of directories identified by a glob (--pattern). Each directory is expected to contain at least two input frames, with each contiguous frame pair treated as an input to generate in-between frames.

/film_net/Style/saved_model \ --times_to_interpolate 6 \ --output_video">
> python3 -m frame_interpolation.eval.interpolator_cli \
     --pattern "frame_interpolation/photos" \
     --model_path 
   
    /film_net/Style/saved_model \
     --times_to_interpolate 6 \
     --output_video

   

You will find the interpolated frames (including the input frames) in 'frame_interpolation/photos/interpolated_frames/', and the interpolated video at 'frame_interpolation/photos/interpolated.mp4'.

The number of frames is determined by --times_to_interpolate, which controls the number of times the frame interpolator is invoked. When the number of frames in a directory is 2, the number of output frames will be 2^times_to_interpolate+1.

Datasets

We use Vimeo-90K as our main training dataset. For quantitative evaluations, we rely on commonly used benchmark datasets, specifically:

Creating a TFRecord

The training and benchmark evaluation scripts expect the frame triplets in the TFRecord storage format.

We have included scripts that encode the relevant frame triplets into a tf.train.Example data format, and export to a TFRecord file.

You can use the commands python3 -m frame_interpolation.datasets.create_ _tfrecord --help for more information.

For example, run the command below to create a TFRecord for the Middlebury-other dataset. Download the images and point --input_dir to the unzipped folder path.

> python3 -m frame_interpolation.datasets.create_middlebury_tfrecord \
    --input_dir=
   
     \
    --output_tfrecord_filepath=
    

   

Training

Below are our training gin configuration files for the different loss function:

frame_interpolation/training/
├── config/
│   ├── film_net-L1.gin
│   ├── film_net-VGG.gin
│   ├── film_net-Style.gin

To launch a training, simply pass the configuration filepath to the desired experiment.
By default, it uses all visible GPUs for training. To debug or train on a CPU, append --mode cpu.

> python3 -m frame_interpolation.training.train \
     --gin_config frame_interpolation/training/config/
   
    .gin \
     --base_folder 
     \
     --label 
    

    
   
  • When training finishes, the folder structure will look like this:

   
    /
├── 
    
   

Build a SavedModel

Optionally, to build a SavedModel format from a trained checkpoints folder, you can use this command:

> python3 -m frame_interpolation.training.build_saved_model_cli \
     --base_folder  \
     --label 
   

   
  • By default, a SavedModel is created when the training loop ends, and it will be saved at / .

Evaluation on Benchmarks

Below, we provided the evaluation gin configuration files for the benchmarks we have considered:

frame_interpolation/eval/
├── config/
│   ├── middlebury.gin
│   ├── ucf101.gin
│   ├── vimeo_90K.gin
│   ├── xiph_2K.gin
│   ├── xiph_4K.gin

To run an evaluation, simply pass the configuration file of the desired evaluation dataset.
If a GPU is visible, it runs on it.

> python3 -m frame_interpolation.eval.eval_cli -- \
     --gin_config frame_interpolation/eval/config/
   
    .gin \
     --model_path 
    
     /film_net/L1/saved_model

    
   

The above command will produce the PSNR and SSIM scores presented in the paper.

Citation

If you find this implementation useful in your works, please acknowledge it appropriately by citing:

@inproceedings{reda2022film,
 title = {Frame Interpolation for Large Motion},
 author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
 booktitle = {arXiv},
 year = {2022}
}
@misc{film-tf,
  title = {Tensorflow 2 Implementation of "FILM: Frame Interpolation for Large Scene Motion"},
  author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/frame-interpolation}}
}

Contact: Fitsum Reda ([email protected])

Acknowledgments

We would like to thank Richard Tucker, Jason Lai and David Minnen. We would also like to thank Jamie Aspinall for the imagery included in this repository.

Coding style

  • 2 spaces for indentation
  • 80 character line length
  • PEP8 formatting

Disclaimer

This is not an officially supported Google product.

Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022