Constructing Neural Network-Based Models for Simulating Dynamical Systems

Overview

Constructing Neural Network-Based Models for Simulating Dynamical Systems

Note this repo is work in progress prior to reviewing

This is a companion repo for the review paper Constructing Neural Network-Based Models for Simulating Dynamical Systems. The goal is to provide PyTorch implementations that can be used as a starting point for implementation for other applications.

If you use the work please cite it using:

{
    TODO add bibtex key
}

Installing dependencies

python3 -m pip install -r requirements.txt

Where are the models located?

The table below contains the commands necessary to train and evaluate the models described in the review paper. Each experiment can be run using default parameters by executing the script in the python interpreter as follows:

python3 experiments/
   
    .py ...

   
Name Section Command
Vanilla Direct-Solution 3.2 python3 experiments/direct_solution.py --model vanilla
Automatic Differentiation in Direct-Solution 3.3 python3 experiments/direct_solution.py --model autodiff
Physics Informed Neural Networks 3.4 python3 experiments/direct_solution.py --model pinn
Hidden Physics Networks 3.5 python3 experiments/direct_solution.py --model hnn
Direct Time-Stepper 4.2.1 python3 experiments/time_stepper.py --solver direct
Residual Time-Stepper 4.2.2 python3 experiments/time_stepper.py --solver resnet
Euler Time-Stepper 4.2.3 python3 experiments/time_stepper.py --solver euler
Neural ODEs Time-Stepper 4.2.4 python3 experiments/time_stepper.py --solver {rk4,dopri5,tsit5}
Neural State-Space Model 4.3.1 ...
Neural ODEs with input 4.3.2-3 ...
Lagrangian Time-Stepper 4.4.1 ...
Hamiltonian Time-Stepper 4.4.1 ...
Deep Potential Time-Stepper 4.4.2 ...
Deep Markov-Model 4.5.1 ...
Latent Neural ODEs 4.5.2 python3 experiments/latent_neural_odes.py
Bayesian Neural ODEs 4.5.3 ...
Neural SDEs 4.5.4 ...

Docker Image

In an effort to ensure that the code can be executed in the future, we provide a docker image. The Docker image allows the code to be run in a Linux based virtual machine on any platform supported by Docker.

To use the docker image, invoke the build command in the root of this repository:

docker build . -t python_dynamical_systems

Following this "containers" containing the code and all dependencies can be instantiated via the "run" command:

docker run -ti python_dynamical_systems bash

The command will establish an interactive connection to the container. Following this you can execute the code as if it was running on your host machine:

python3 experiments/time_stepper.py ...
Owner
Christian Møldrup Legaard
Christian Møldrup Legaard
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022