Constructing Neural Network-Based Models for Simulating Dynamical Systems

Overview

Constructing Neural Network-Based Models for Simulating Dynamical Systems

Note this repo is work in progress prior to reviewing

This is a companion repo for the review paper Constructing Neural Network-Based Models for Simulating Dynamical Systems. The goal is to provide PyTorch implementations that can be used as a starting point for implementation for other applications.

If you use the work please cite it using:

{
    TODO add bibtex key
}

Installing dependencies

python3 -m pip install -r requirements.txt

Where are the models located?

The table below contains the commands necessary to train and evaluate the models described in the review paper. Each experiment can be run using default parameters by executing the script in the python interpreter as follows:

python3 experiments/
   
    .py ...

   
Name Section Command
Vanilla Direct-Solution 3.2 python3 experiments/direct_solution.py --model vanilla
Automatic Differentiation in Direct-Solution 3.3 python3 experiments/direct_solution.py --model autodiff
Physics Informed Neural Networks 3.4 python3 experiments/direct_solution.py --model pinn
Hidden Physics Networks 3.5 python3 experiments/direct_solution.py --model hnn
Direct Time-Stepper 4.2.1 python3 experiments/time_stepper.py --solver direct
Residual Time-Stepper 4.2.2 python3 experiments/time_stepper.py --solver resnet
Euler Time-Stepper 4.2.3 python3 experiments/time_stepper.py --solver euler
Neural ODEs Time-Stepper 4.2.4 python3 experiments/time_stepper.py --solver {rk4,dopri5,tsit5}
Neural State-Space Model 4.3.1 ...
Neural ODEs with input 4.3.2-3 ...
Lagrangian Time-Stepper 4.4.1 ...
Hamiltonian Time-Stepper 4.4.1 ...
Deep Potential Time-Stepper 4.4.2 ...
Deep Markov-Model 4.5.1 ...
Latent Neural ODEs 4.5.2 python3 experiments/latent_neural_odes.py
Bayesian Neural ODEs 4.5.3 ...
Neural SDEs 4.5.4 ...

Docker Image

In an effort to ensure that the code can be executed in the future, we provide a docker image. The Docker image allows the code to be run in a Linux based virtual machine on any platform supported by Docker.

To use the docker image, invoke the build command in the root of this repository:

docker build . -t python_dynamical_systems

Following this "containers" containing the code and all dependencies can be instantiated via the "run" command:

docker run -ti python_dynamical_systems bash

The command will establish an interactive connection to the container. Following this you can execute the code as if it was running on your host machine:

python3 experiments/time_stepper.py ...
Owner
Christian Møldrup Legaard
Christian Møldrup Legaard
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022