EdiBERT, a generative model for image editing

Related tags

Deep LearningEdiBERT
Overview

EdiBERT, a generative model for image editing

EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The same EdiBERT model, derived from a single training, can be used on a wide variety of tasks.

edibert_example

We follow the implementation of Taming-Transformers (https://github.com/CompVis/taming-transformers). Main modifications can be found in: taming/models/bert_transformer.py ; scripts/sample_mask_likelihood_maximization.py.

Requirements

A suitable conda environment named edibert can be created and activated with:

conda env create -f environment.yaml
conda activate edibert

FFHQ

Download FFHQ dataset (https://github.com/NVlabs/ffhq-dataset) and put it into data/ffhq/.

Training BERT

In the logs/ folder, download and extract the FFHQ VQGAN:

gdown --id '1P_wHLRfdzf1DjsAH_tG10GXk9NKEZqTg'
tar -xvzf 2021-04-23T18-19-01_ffhq_vqgan.tar.gz

Training on 1 GPUs:

python main.py --base configs/ffhq_transformer_bert_2D.yaml -t True --gpus 0,

Training on 2 GPUs:

python main.py --base configs/ffhq_transformer_bert_2D.yaml -t True --gpus 0,1

Running pre-trained BERT on composite/scribble-edited images

In the logs/ folder, download and extract the FFHQ VQGAN:

gdown --id '1P_wHLRfdzf1DjsAH_tG10GXk9NKEZqTg'
tar -xvzf 2021-04-23T18-19-01_ffhq_vqgan.tar.gz

In the logs/ folder, download and extract the FFHQ BERT:

gdown --id '1YGDd8XyycKgBp_whs9v1rkYdYe4Oxfb3'
tar -xvzf 2021-10-14T16-32-28_ffhq_transformer_bert_2D.tar.gz

folders and place them into logs.

Then, launch the following script for composite images:

python scripts/sample_mask_likelihood_maximization.py -r logs/2021-10-14T16-32-28_ffhq_transformer_bert_2D/checkpoints/epoch=000019.ckpt \
--image_folder data/ffhq_collages/ --mask_folder data/ffhq_collages_masks/ --image_list data/ffhq_collages.txt --keep_img \
--dilation_sampling 1 -k 100 -t 1.0 --batch_size 5 --bert --epochs 2  \
--device 0 --random_order \
--mask_collage --collage_frequency 3 --gaussian_smoothing_collage

Then, launch the following script for edits images:

python scripts/sample_mask_likelihood_maximization.py -r logs/2021-10-14T16-32-28_ffhq_transformer_bert_2D/checkpoints/epoch=000019.ckpt \
--image_folder data/ffhq_edits/ --mask_folder data/ffhq_edits_masks/ --image_list data/ffhq_edits.txt --keep_img \
--dilation_sampling 1 -k 100 -t 1.0 --batch_size 5 --bert --epochs 2  \
--device 0 --random_order \
--mask_collage --collage_frequency 3 --gaussian_smoothing_collage

The samples can then be found in logs/my_model/samples/. Here, the --batch_size argument corresponds to the number of EdiBERT generations per image.

Notebooks for playing with completion/denoising with BERT

Notebooks for image denoising and image inpainting can also be found in the main folder.

Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023