JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

Overview

PyPI - License PyPI PyPI - Python Version Build Status codecov Documentation Status

jumpdiff

jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpdiff one can extract the parameters of a jump-diffusion process from one-dimensional timeseries, employing both a kernel-density estimation method combined with a set on second-order corrections for a precise retrieval of the parameters for short timeseries.

Installation

To install jumpdiff, run

   pip install jumpdiff

Then on your favourite editor just use

   import jumpdiff as jd

Dependencies

The library parameter estimation depends on numpy and scipy solely. The mathematical formulae depend on sympy. It stems from kramersmoyal project, but functions independently from it3.

Documentation

You can find the documentation here.

Jump-diffusion processes

The theory

Jump-diffusion processes1, as the name suggest, are a mixed type of stochastic processes with a diffusive and a jump term. One form of these processes which is mathematically traceable is given by the Stochastic Differential Equation

which has 4 main elements: a drift term , a diffusion term , and jump amplitude term , which is given by a Gaussian distribution, and finally a jump rate . You can find a good review on this topic in Ref. 2.

Integrating a jump-diffusion process

Let us use the functions in jumpdiff to generate a jump-difussion process, and subsequently retrieve the parameters. This is a good way to understand the usage of the integrator and the non-parametric retrieval of the parameters.

First we need to load our library. We will call it jd

import jumpdiff as jd

Let us thus define a jump-diffusion process and use jd_process to integrate it. Do notice here that we need the drift and diffusion as functions.

# integration time and time sampling
t_final = 10000
delta_t = 0.001

# A drift function
def a(x):
    return -0.5*x

# and a (constant) diffusion term
def b(x):
    return 0.75

# Now define a jump amplitude and rate
xi = 2.5
lamb = 1.75

# and simply call the integration function
X = jd.jd_process(t_final, delta_t, a=a, b=b, xi=xi, lamb=lamb)

This will generate a jump diffusion process X of length int(10000/0.001) with the given parameters.

Using jumpdiff to retrieve the parameters

Moments and Kramers─Moyal coefficients

Take the timeseries X and use the function moments to retrieve the conditional moments of the process. For now let us focus on the shortest time lag, so we can best approximate the Kramers─Moyal coefficients. For this case we can simply employ

edges, moments = jd.moments(timeseries = X)

In the array edges are the limits of our space, and in our array moments are recorded all 6 powers/order of our conditional moments. Let us take a look at these before we proceed, to get acquainted with them.

We can plot the first moment with any conventional plotter, so lets use here plotly from matplotlib

import matplotlib.plotly as plt

# we want the first power, so we need 'moments[1,...]'
plt.plot(edges, moments[1,...])

The first moment here (i.e., the first Kramers─Moyal coefficient) is given solely by the drift term that we have selected -0.5*x

And the second moment (i.e., the second Kramers─Moyal coefficient) is a mixture of both the contributions of the diffusive term and the jump terms and .

You have this stored in moments[2,...].

Retrieving the jump-related terms

Naturally one of the most pertinent questions when addressing jump-diffusion processes is the possibility of recovering these same parameters from data. For the given jump-diffusion process we can use the jump_amplitude and jump_rate functions to non-parametrically estimate the jump amplitude and jump rate terms.

After having the moments in hand, all we need is

# first estimate the jump amplitude
xi_est = jd.jump_amplitude(moments = moments)

# and now estimated the jump rate
lamb_est = jd.jump_rate(moments = moments)

which resulted in our case in (xi_est) ξ = 2.43 ± 0.17 and (lamb_est) λ = 1.744 * delta_t (don't forget to divide lamb_est by delta_t)!

Other functions and options

Include in this package is also the Milstein scheme of integration, particularly important when the diffusion term has some spacial x dependence. moments can actually calculate the conditional moments for different lags, using the parameter lag.

In formulae the set of formulas needed to calculate the second order corrections are given (in sympy).

Contributions

We welcome reviews and ideas from everyone. If you want to share your ideas, upgrades, doubts, or simply report a bug, open an issue here on GitHub, or contact us directly. If you need help with the code, the theory, or the implementation, drop us an email. We abide to a Conduct of Fairness.

Changelog

  • Version 0.4 - Designing a set of self-consistency checks, the documentation, examples, and a trial code. Code at PyPi.
  • Version 0.3 - Designing a straightforward procedure to retrieve the jump amplitude and jump rate functions, alongside with a easy sympy displaying the correction.
  • Version 0.2 - Introducing the second-order corrections to the moments
  • Version 0.1 - Design an implementation of the moments functions, generalising kramersmoyal km.

Literature and Support

History

This project was started in 2017 at the neurophysik by Leonardo Rydin Gorjão, Jan Heysel, Klaus Lehnertz, and M. Reza Rahimi Tabar, and separately by Pedro G. Lind, at the Department of Computer Science, Oslo Metropolitan University. From 2019 to 2021, Pedro G. Lind, Leonardo Rydin Gorjão, and Dirk Witthaut developed a set of corrections and an implementation for python, presented here.

Funding

Helmholtz Association Initiative Energy System 2050 - A Contribution of the Research Field Energy and the grant No. VH-NG-1025 and STORM - Stochastics for Time-Space Risk Models project of the Research Council of Norway (RCN) No. 274410.


Bibliography

1 Tabar, M. R. R. Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems. Springer, International Publishing (2019), Chapter Stochastic Processes with Jumps and Non-vanishing Higher-Order Kramers–Moyal Coefficients.

2 Friedrich, R., Peinke, J., Sahimi, M., Tabar, M. R. R. Approaching complexity by stochastic methods: From biological systems to turbulence, Physics Reports 506, 87–162 (2011).

3 Rydin Gorjão, L., Meirinhos, F. kramersmoyal: Kramers–Moyal coefficients for stochastic processes. Journal of Open Source Software, 4(44) (2019).

Extended Literature

You can find further reading on SDE, non-parametric estimatons, and the general principles of the Fokker–Planck equation, Kramers–Moyal expansion, and related topics in the classic (physics) books

  • Risken, H. The Fokker–Planck equation. Springer, Berlin, Heidelberg (1989).
  • Gardiner, C.W. Handbook of Stochastic Methods. Springer, Berlin (1985).

And an extensive review on the subject here

You might also like...
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

A parametric soroban written with CADQuery.
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

The official implementation of the research paper
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

This repository contains a pytorch implementation of
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

A Python implementation of global optimization with gaussian processes.
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

Comments
  • Example notation

    Example notation

    Hi @LRydin, thank you for this great package. I have a question regarding the notation in the definition of the jump term. The parameter xi is referred to as the jump amplitude, which is however normally distributed with variance sigma_xi. Is the xi parameter as set in the example actually the standard deviation of the jump amplitude?

    Furthermore, is there a way to set the initial condition, e.g., X_0 = 0?

    Thanks again! Kyriakos

    opened by kyrgeorgiou 2
  • negative lambda and others

    negative lambda and others

    This is a great package. And I have some questions. Recently I come across the KM perspective to estimate levy triplet by virtue of the book of Mr Tabar published in 2019. Statisticians, especially French scholars, have done a lot on it. However, real time series are traces of dynamic processes ruled by some unknown laws. Methods that lack the support of some natural law governance yet only focus on data may not be the right road. And the KM perspective shows me a direction. I tried your package last night with some real time series, but many of them are negative lambda. Besides, I want to use the estimated lambda and xi to generate surrogate process to compare with the original time series (I also want to get drift and diffusion from the moments but moments are not scalar,thus I calculated from the original), but the generated X has many nan. Could you give some guidance? And the KM perspective is a nonparametric method, which may have some similarities with the statistical methods worked by, e.g. Fabienne Comte or Jean Jacod. Could you show some details on them? Finally neural network is nonparametric method to approximate the unknown distribution by stacked neural layers, do you have some plan to try them?

    Many thanks

    opened by funfwo 1
Releases(v0.4)
  • v0.4(Jul 29, 2021)

    Jump-Diffusion processes non-parametric estimation methods. From numerical simulations to estimations. This release includes two integrations schemes, moment calculation, the Q-ratio to examine jumpiness of timeseries, and parameter estimation for univariate Jump-Diffusion processes.

    Source code(tar.gz)
    Source code(zip)
Owner
Rydin
I had cereals for breakfast
Rydin
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022