Transformer Tracking (CVPR2021)

Related tags

Deep LearningTransT
Overview

TransT - Transformer Tracking [CVPR2021]

Official implementation of the TransT (CVPR2021) , including training code and trained models.

We are revising the paper and will upload it in the next week

Results

Model LaSOT
AUC (%)
TrackingNet
AUC (%)
GOT-10k
AO (%)
OTB100
AUC (%)
NFS
AUC (%)
UAV123
AUC (%)
Speed
Params
TransT-N2 64.2 80.9 69.9 69.3 65.4 66.0 65.6fps 16.7M
TransT-N4 64.9 81.4 72.3 69.0 65.3 68.1 47.3fps 23.0M

Installation

This document contains detailed instructions for installing the necessary dependencied for TransT. The instructions have been tested on Ubuntu 18.04 system.

Install dependencies

  • Create and activate a conda environment

    conda create -n transt python=3.7
    conda activate transt
  • Install PyTorch

    conda install -c pytorch pytorch=1.5 torchvision=0.6.1 cudatoolkit=10.2
  • Install other packages

    conda install matplotlib pandas tqdm
    pip install opencv-python tb-nightly visdom scikit-image tikzplotlib gdown
    conda install cython scipy
    pip install pycocotools jpeg4py
    pip install wget yacs
    pip install shapely==1.6.4.post2
  • Setup the environment
    Create the default environment setting files.

    # Change directory to <PATH_of_TransT>
    cd TransT
    
    # Environment settings for pytracking. Saved at pytracking/evaluation/local.py
    python -c "from pytracking.evaluation.environment import create_default_local_file; create_default_local_file()"
    
    # Environment settings for ltr. Saved at ltr/admin/local.py
    python -c "from ltr.admin.environment import create_default_local_file; create_default_local_file()"

You can modify these files to set the paths to datasets, results paths etc.

  • Add the project path to environment variables
    Open ~/.bashrc, and add the following line to the end. Note to change <path_of_TransT> to your real path.
    export PYTHONPATH=<path_of_TransT>:$PYTHONPATH
    
  • Download the pre-trained networks
    Download the network for TransT and put it in the directory set by "network_path" in "pytracking/evaluation/local.py". By default, it is set to pytracking/networks.

Quick Start

Traning

  • Modify local.py to set the paths to datasets, results paths etc.
  • Runing the following commands to train the TransT. You can customize some parameters by modifying transt.py
    conda activate transt
    cd TransT/ltr
    python run_training.py transt transt

Evaluation

  • We integrated PySOT for evaluation.

    You need to specify the path of the model and dataset in the test.py.

    net_path = '/path_to_model' #Absolute path of the model
    dataset_root= '/path_to_datasets' #Absolute path of the datasets

    Then run the following commands.

    conda activate TransT
    cd TransT
    python -u pysot_toolkit/test.py --dataset <name of dataset> --name 'transt' #test tracker #test tracker
    python pysot_toolkit/eval.py --tracker_path results/ --dataset <name of dataset> --num 1 --tracker_prefix 'transt' #eval tracker

    The testing results will in the current directory(results/dataset/transt/)

  • You can also use pytracking to test and evaluate tracker. The results might be slightly different with PySOT due to the slight difference in implementation (pytracking saves results as integers, pysot toolkit saves the results as decimals).

Acknowledgement

This is a modified version of the python framework PyTracking based on Pytorch, also borrowing from PySOT and detr. We would like to thank their authors for providing great frameworks and toolkits.

Contact

  • Xin Chen (email:[email protected])

    Feel free to contact me if you have additional questions.

Owner
chenxin
Master Student of Dalian University of Technology
chenxin
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022