A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

Related tags

Deep LearningELD
Overview

ELD

The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) version "Physics-based Noise Modeling for Extreme Low-light Photography". Interested readers are also referred to an insightful Note about this work in Zhihu (Chinese).

News

  • 2022/01/08: Major Update: Release the training code and other related items (including synthetic datasets, customized rawpy, calibrated camera noise parameters, baseline noise models, calibrated SonyA7S2 camera response function (CRF) and a modern implementation of EMoR radiometric calibration method) to accelerate further research!
  • 2022/01/05: Replace the released ELD dataset by my local version of the dataset. We thank @fenghansen for pointing this out. Please refer to this issue for more details.
  • 2021/08/05: The comprehensive version of this work was accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  • 2020/07/16: Release the ELD dataset and our pretrained models at GoogleDrive and Baidudisk (0lby)

Highlights

  • We present a highly accurate noise formation model based on the characteristics of CMOS photosensors, thereby enabling us to synthesize realistic samples that better match the physics of image formation process.

  • To study the generalizability of a neural network trained with existing schemes, we introduce a new Extreme Low-light Denoising (ELD) dataset that covers four representative modern camera devices for evaluation purposes only. The image capture setup and example images are shown as below:

  • By training only with our synthetic data, we demonstrate a convolutional neural network can compete with or sometimes even outperform the network trained with paired real data under extreme low-light settings. The denoising results of networks trained with multiple schemes, i.e. 1) synthetic data generated by the poissonian-gaussian noise model, 2) paired read data of SID dataset and 3) synthetic data generated by our proposed noise model, are displayed as follows:

Prerequisites

  • Python >=3.6, PyTorch >= 1.6
  • Requirements: opencv-python, tensorboardX, lmdb, rawpy, torchinterp1d
  • Platforms: Ubuntu 16.04, cuda-10.1

Notice this codebase relies on my own customized rawpy, which provides more functionalities than the official one. This is released together with our datasets and the pretrained models. To build rawpy from source, please first compile and install the LibRaw library following the official instructions, then type pip install -e . in the rawpy directory.

Quick Start

Due to the business license, we are unable to to provide the noise model as well as the calibration method. Instead, we release our collected ELD dataset and our pretrained models to facilitate future research.

To reproduce our results presented in the paper (Table 1 and 2), please take a look at scripts/test_SID.sh and scripts/test_ELD.sh

Update: (2022-01-08) We release the training code and the synthetic datasets per the users' requests. The training scripts and the user instructions can be found in scripts/train.sh. Additionally, we provide the baseline noise models (G/G+P/G+P*) and the calibrated noise parameters for all cameras of ELD for training (see noise.py and train_syn.py), which could serve as a starting point to develop your own noise model.

We use lmdb to prepare datasets, please refer to util/lmdb_data.py to see how we generate datasets from SID. We also provide a new implementation of a classic radiometric calibration method EMoR, and utilize it to calibrate the CRF of SonyA7S2, which could be further used to simulate realistic on-board ISP as in the commercial SonyA7S2 camera.

ELD Dataset

The dataset capture protocol is shown as follow:

We choose three ISO settings (800, 1600, 3200) and four low light factors (x1, x10, x100, x200) to capture the dataset (x1/x10 is not used in our paper). Image ids 1, 6, 11, 16 represent the long-exposure reference images. Please refer to ELDEvalDataset class in data/sid_dataset.py for more details.

Citation

If you find our code helpful in your research or work please cite our paper.

@inproceedings{wei2020physics,
  title={A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising},
  author={Wei, Kaixuan and Fu, Ying and Yang, Jiaolong and Huang, Hua},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020},
}

@article{wei2021physics,
  title={Physics-based Noise Modeling for Extreme Low-light Photography},
  author={Wei, Kaixuan and Fu, Ying and Zheng, Yinqiang and Yang, Jiaolong},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Contact

If you find any problem, please feel free to contact me (kxwei at princeton.edu kaixuan_wei at bit.edu.cn). A brief self-introduction (including your name, affiliation and position) is required, if you would like to get an in-depth help from me. I'd be glad to talk with you if more information (e.g. your personal website link) is attached. Note I would not reply to any impolite/aggressive email that violates the above criteria.

Owner
Kaixuan Wei
PhD student at Princeton University. Previously I obtained BS and MS degrees from BIT and ever did research at Cambridge and MSRA.
Kaixuan Wei
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021