A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

Related tags

Deep LearningELD
Overview

ELD

The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) version "Physics-based Noise Modeling for Extreme Low-light Photography". Interested readers are also referred to an insightful Note about this work in Zhihu (Chinese).

News

  • 2022/01/08: Major Update: Release the training code and other related items (including synthetic datasets, customized rawpy, calibrated camera noise parameters, baseline noise models, calibrated SonyA7S2 camera response function (CRF) and a modern implementation of EMoR radiometric calibration method) to accelerate further research!
  • 2022/01/05: Replace the released ELD dataset by my local version of the dataset. We thank @fenghansen for pointing this out. Please refer to this issue for more details.
  • 2021/08/05: The comprehensive version of this work was accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  • 2020/07/16: Release the ELD dataset and our pretrained models at GoogleDrive and Baidudisk (0lby)

Highlights

  • We present a highly accurate noise formation model based on the characteristics of CMOS photosensors, thereby enabling us to synthesize realistic samples that better match the physics of image formation process.

  • To study the generalizability of a neural network trained with existing schemes, we introduce a new Extreme Low-light Denoising (ELD) dataset that covers four representative modern camera devices for evaluation purposes only. The image capture setup and example images are shown as below:

  • By training only with our synthetic data, we demonstrate a convolutional neural network can compete with or sometimes even outperform the network trained with paired real data under extreme low-light settings. The denoising results of networks trained with multiple schemes, i.e. 1) synthetic data generated by the poissonian-gaussian noise model, 2) paired read data of SID dataset and 3) synthetic data generated by our proposed noise model, are displayed as follows:

Prerequisites

  • Python >=3.6, PyTorch >= 1.6
  • Requirements: opencv-python, tensorboardX, lmdb, rawpy, torchinterp1d
  • Platforms: Ubuntu 16.04, cuda-10.1

Notice this codebase relies on my own customized rawpy, which provides more functionalities than the official one. This is released together with our datasets and the pretrained models. To build rawpy from source, please first compile and install the LibRaw library following the official instructions, then type pip install -e . in the rawpy directory.

Quick Start

Due to the business license, we are unable to to provide the noise model as well as the calibration method. Instead, we release our collected ELD dataset and our pretrained models to facilitate future research.

To reproduce our results presented in the paper (Table 1 and 2), please take a look at scripts/test_SID.sh and scripts/test_ELD.sh

Update: (2022-01-08) We release the training code and the synthetic datasets per the users' requests. The training scripts and the user instructions can be found in scripts/train.sh. Additionally, we provide the baseline noise models (G/G+P/G+P*) and the calibrated noise parameters for all cameras of ELD for training (see noise.py and train_syn.py), which could serve as a starting point to develop your own noise model.

We use lmdb to prepare datasets, please refer to util/lmdb_data.py to see how we generate datasets from SID. We also provide a new implementation of a classic radiometric calibration method EMoR, and utilize it to calibrate the CRF of SonyA7S2, which could be further used to simulate realistic on-board ISP as in the commercial SonyA7S2 camera.

ELD Dataset

The dataset capture protocol is shown as follow:

We choose three ISO settings (800, 1600, 3200) and four low light factors (x1, x10, x100, x200) to capture the dataset (x1/x10 is not used in our paper). Image ids 1, 6, 11, 16 represent the long-exposure reference images. Please refer to ELDEvalDataset class in data/sid_dataset.py for more details.

Citation

If you find our code helpful in your research or work please cite our paper.

@inproceedings{wei2020physics,
  title={A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising},
  author={Wei, Kaixuan and Fu, Ying and Yang, Jiaolong and Huang, Hua},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020},
}

@article{wei2021physics,
  title={Physics-based Noise Modeling for Extreme Low-light Photography},
  author={Wei, Kaixuan and Fu, Ying and Zheng, Yinqiang and Yang, Jiaolong},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Contact

If you find any problem, please feel free to contact me (kxwei at princeton.edu kaixuan_wei at bit.edu.cn). A brief self-introduction (including your name, affiliation and position) is required, if you would like to get an in-depth help from me. I'd be glad to talk with you if more information (e.g. your personal website link) is attached. Note I would not reply to any impolite/aggressive email that violates the above criteria.

Owner
Kaixuan Wei
PhD student at Princeton University. Previously I obtained BS and MS degrees from BIT and ever did research at Cambridge and MSRA.
Kaixuan Wei
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021