Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

Overview

pypi docs License

English | 简体中文

Easy Parallel Library

Overview

Easy Parallel Library (EPL) is a general and efficient library for distributed model training.

  • Usability - Users can implement different parallelism strategies with a few lines of annotations, including data parallelism, pipeline parallelism, tensor model parallelism, and their hybrids.
  • Memory Efficient - EPL provides various memory-saving techniques, including gradient checkpoint, ZERO, CPU Offload, etc. Users are able to train larger models with fewer computing resources.
  • High Performance - EPL provides an optimized communication library to achieve high scalability and efficiency.

For more information, you may read the docs.

EPL Model Zoo provides end-to-end parallel training examples.

Installation

To install EPL, please refer to the following instructions.

Examples

Here are a few examples of different parallelism strategies by changing only annotations. Please refer to API documentation for API details and tutorials for more examples.

Data Parallelism

The following example shows a basic data parallelism annotation. The data parallelism degree is determined by the allocated GPU number.

+ import epl
+ epl.init()
+ with epl.replicate(device_count=1):
    model()

Pipeline Parallelism

The following example shows pipeline parallelism with two pipeline stages, each stage is computed with one GPU. If the total GPU number is 4, EPL will automatically apply two-degree data parallelism over the model pipeline.

+ import epl
+ 
+ config = epl.Config({"pipeline.num_micro_batch": 4})
+ epl.init(config)
+ with epl.replicate(device_count=1, name="stage_0"):
    model_part1()
+ with epl.replicate(device_count=1, name="stage_1"):
    model_part2()

Tensor Model Parallelism

The following example shows a tensor model parallelism annotation. We apply data parallelism to the ResNet part, and apply tensor model parallelism to classification part.

+ import epl
+ config = epl.Config({"cluster.colocate_split_and_replicate": True})
+ epl.init(config)
+ with epl.replicate(8):
    ResNet()
+ with epl.split(8):
    classification()

Publication

If you use EPL in your publication, please cite it by using the following BibTeX entry.

@misc{jia2021whale,
      title={Whale: Scaling Deep Learning Model Training to the Trillions}, 
      author={Xianyan Jia and Le Jiang and Ang Wang and Jie Zhang and Xinyuan Li and Wencong Xiao and Langshi chen and Yong Li and Zhen Zheng and Xiaoyong Liu and Wei Lin},
      year={2021},
      eprint={2011.09208},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}

Contact Us

Join the Official Discussion Group on DingTalk.

DingTalk Group

Owner
Alibaba
Alibaba Open Source
Alibaba
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022