Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Overview

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations

Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop Shared Visual Representations in Human and Machine Intelligence (SVRHM). OpenReviews

Is it possible that human learn their visual representations with a self-supervised learning framework similar to the machines? Popular self-supervised learning framework encourages the model to learn similar representations invariant to the augmentations of the images. Is it possible to learn good visual representation using the natural "image augmentations" available to our human visual system?

In this project, we reverse-engineered the key data augmentations that support the learned representation quality , namely random resized crop and blur. We hypothesized that saccade and foveation in our visual processes, is the equivalence of random crops and blur. We implement these biological plausible transformation of images and test if they could confer the same representation quality as those engineered ones.

Our experimental pipeline is based on the pytorch SimCLR implemented by sthalles and by Spijkervet. Our development supports our biologically inspired data augmentations, visualization and post hoc data analysis.

Usage

Colab Tutorials

  • Open In Colab Tutorial: Demo of Biological transformations
  • Open In Colab Tutorial: Augmentation pipeline applied to the STL10 dataset
  • Open In Colab Tutorial: Demo of Training STL10
  • Open In Colab Tutorial: Sample training and evaluation curves.

Local Testing

For running a quick demo of training, replace the $Datasets_path with the parent folder of stl10_binary (e.g. .\Datasets). You could download and extract STL10 from here. Replace $logdir with the folder to save all running logs and checkpoints, then you can use tensorboard --logdir $logdir to view the training process.

python run_magnif.py -data $Datasets_path -dataset-name stl10 --workers 16 --log_root $logdir\
	--ckpt_every_n_epocs 5 --epochs 100  --batch-size 256  --out_dim 256  \
	--run_label proj256_eval_magnif_cvr_0_05-0_35 --magnif \
	--cover_ratio 0.05 0.35  --fov_size 20  --K  20  --sampling_bdr 16 

Code has been tested on Ubuntu and Windows10 system.

Cluster Testing

For running in docker / on cluster, we used the following pytorch docker image pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9. For settings for LSF Spectrum cluster, you can refer to scripts. These jobs are submitted via bsub < $name_of_script

To support multi-worker data-preprocessing, export LSF_DOCKER_SHM_SIZE=16g need to be set beforehand. Here is the example script for setting up an interactive environment to test out the code.

export LSF_DOCKER_SHM_SIZE=16g 
bsub -Is -M 32GB -q general-interactive -R 'gpuhost' -R  'rusage[mem=32GB]'  -gpu "num=1:gmodel=TeslaV100_SXM2_32GB" -a 'docker(pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9)' /bin/bash

Multi-GPU training has not been tested.

Implementation

We implemented foveation in two ways: one approximating our perception, the other approximating the cortical representation of the image. In our perception, we can see with highest resolution at the fixation point, while the peripheral vision is blurred and less details could be recognized (Arturo; Simoncelli 2011). Moreover, when we change fixation across the image, the whole scene still feels stable without shifting. So we model this perception as a spatially varying blur of image as people classically did.

In contrast, from a neurobiological view, our visual cortex distorted the retinal input: a larger cortical area processes the input at fovea than that for periphery given the same image size. This is known as the cortical magnification. Pictorially, this is magnifying and over-representing the image around the fixation points. We model this transform with sampling the original image with a warpped grid.

These two different views of foveation (perceptual vs neurobiological) were implemented and compared as data augmentations in SimCLR.

Structure of Repo

  • Main command line interface
    • run.py Running baseline training pipeline without bio-inspired augmentations.
    • run_salcrop.py Running training pipeline with options for foveation transforms and saliency based sampling.
    • run_magnif.py Running training pipeline with options for foveation transforms and saliency based sampling.
  • data_aug\, implementation of our bio-inspired augmentations
  • posthoc\, analysis code for training result.
  • scripts\, scripts that run experiments on cluster.

Dependency

  • pytorch. Tested with version 1.7.1-1.10.0
  • kornia pip install kornia. Tested with version 0.3.1-0.6.1.
  • FastSal, we forked and modified a few lines of original to make it compatible with current pytorch 3.9 and torchvision.

Inquiries: [email protected]

Owner
Binxu
PhD student in System Neuro @PonceLab @Harvard, using generative models, CNN and optimization to understand brain Previously: Louis Tao
Binxu
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022