Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Overview

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations

Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop Shared Visual Representations in Human and Machine Intelligence (SVRHM). OpenReviews

Is it possible that human learn their visual representations with a self-supervised learning framework similar to the machines? Popular self-supervised learning framework encourages the model to learn similar representations invariant to the augmentations of the images. Is it possible to learn good visual representation using the natural "image augmentations" available to our human visual system?

In this project, we reverse-engineered the key data augmentations that support the learned representation quality , namely random resized crop and blur. We hypothesized that saccade and foveation in our visual processes, is the equivalence of random crops and blur. We implement these biological plausible transformation of images and test if they could confer the same representation quality as those engineered ones.

Our experimental pipeline is based on the pytorch SimCLR implemented by sthalles and by Spijkervet. Our development supports our biologically inspired data augmentations, visualization and post hoc data analysis.

Usage

Colab Tutorials

  • Open In Colab Tutorial: Demo of Biological transformations
  • Open In Colab Tutorial: Augmentation pipeline applied to the STL10 dataset
  • Open In Colab Tutorial: Demo of Training STL10
  • Open In Colab Tutorial: Sample training and evaluation curves.

Local Testing

For running a quick demo of training, replace the $Datasets_path with the parent folder of stl10_binary (e.g. .\Datasets). You could download and extract STL10 from here. Replace $logdir with the folder to save all running logs and checkpoints, then you can use tensorboard --logdir $logdir to view the training process.

python run_magnif.py -data $Datasets_path -dataset-name stl10 --workers 16 --log_root $logdir\
	--ckpt_every_n_epocs 5 --epochs 100  --batch-size 256  --out_dim 256  \
	--run_label proj256_eval_magnif_cvr_0_05-0_35 --magnif \
	--cover_ratio 0.05 0.35  --fov_size 20  --K  20  --sampling_bdr 16 

Code has been tested on Ubuntu and Windows10 system.

Cluster Testing

For running in docker / on cluster, we used the following pytorch docker image pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9. For settings for LSF Spectrum cluster, you can refer to scripts. These jobs are submitted via bsub < $name_of_script

To support multi-worker data-preprocessing, export LSF_DOCKER_SHM_SIZE=16g need to be set beforehand. Here is the example script for setting up an interactive environment to test out the code.

export LSF_DOCKER_SHM_SIZE=16g 
bsub -Is -M 32GB -q general-interactive -R 'gpuhost' -R  'rusage[mem=32GB]'  -gpu "num=1:gmodel=TeslaV100_SXM2_32GB" -a 'docker(pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9)' /bin/bash

Multi-GPU training has not been tested.

Implementation

We implemented foveation in two ways: one approximating our perception, the other approximating the cortical representation of the image. In our perception, we can see with highest resolution at the fixation point, while the peripheral vision is blurred and less details could be recognized (Arturo; Simoncelli 2011). Moreover, when we change fixation across the image, the whole scene still feels stable without shifting. So we model this perception as a spatially varying blur of image as people classically did.

In contrast, from a neurobiological view, our visual cortex distorted the retinal input: a larger cortical area processes the input at fovea than that for periphery given the same image size. This is known as the cortical magnification. Pictorially, this is magnifying and over-representing the image around the fixation points. We model this transform with sampling the original image with a warpped grid.

These two different views of foveation (perceptual vs neurobiological) were implemented and compared as data augmentations in SimCLR.

Structure of Repo

  • Main command line interface
    • run.py Running baseline training pipeline without bio-inspired augmentations.
    • run_salcrop.py Running training pipeline with options for foveation transforms and saliency based sampling.
    • run_magnif.py Running training pipeline with options for foveation transforms and saliency based sampling.
  • data_aug\, implementation of our bio-inspired augmentations
  • posthoc\, analysis code for training result.
  • scripts\, scripts that run experiments on cluster.

Dependency

  • pytorch. Tested with version 1.7.1-1.10.0
  • kornia pip install kornia. Tested with version 0.3.1-0.6.1.
  • FastSal, we forked and modified a few lines of original to make it compatible with current pytorch 3.9 and torchvision.

Inquiries: [email protected]

Owner
Binxu
PhD student in System Neuro @PonceLab @Harvard, using generative models, CNN and optimization to understand brain Previously: Louis Tao
Binxu
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021