Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Overview

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations

Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop Shared Visual Representations in Human and Machine Intelligence (SVRHM). OpenReviews

Is it possible that human learn their visual representations with a self-supervised learning framework similar to the machines? Popular self-supervised learning framework encourages the model to learn similar representations invariant to the augmentations of the images. Is it possible to learn good visual representation using the natural "image augmentations" available to our human visual system?

In this project, we reverse-engineered the key data augmentations that support the learned representation quality , namely random resized crop and blur. We hypothesized that saccade and foveation in our visual processes, is the equivalence of random crops and blur. We implement these biological plausible transformation of images and test if they could confer the same representation quality as those engineered ones.

Our experimental pipeline is based on the pytorch SimCLR implemented by sthalles and by Spijkervet. Our development supports our biologically inspired data augmentations, visualization and post hoc data analysis.

Usage

Colab Tutorials

  • Open In Colab Tutorial: Demo of Biological transformations
  • Open In Colab Tutorial: Augmentation pipeline applied to the STL10 dataset
  • Open In Colab Tutorial: Demo of Training STL10
  • Open In Colab Tutorial: Sample training and evaluation curves.

Local Testing

For running a quick demo of training, replace the $Datasets_path with the parent folder of stl10_binary (e.g. .\Datasets). You could download and extract STL10 from here. Replace $logdir with the folder to save all running logs and checkpoints, then you can use tensorboard --logdir $logdir to view the training process.

python run_magnif.py -data $Datasets_path -dataset-name stl10 --workers 16 --log_root $logdir\
	--ckpt_every_n_epocs 5 --epochs 100  --batch-size 256  --out_dim 256  \
	--run_label proj256_eval_magnif_cvr_0_05-0_35 --magnif \
	--cover_ratio 0.05 0.35  --fov_size 20  --K  20  --sampling_bdr 16 

Code has been tested on Ubuntu and Windows10 system.

Cluster Testing

For running in docker / on cluster, we used the following pytorch docker image pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9. For settings for LSF Spectrum cluster, you can refer to scripts. These jobs are submitted via bsub < $name_of_script

To support multi-worker data-preprocessing, export LSF_DOCKER_SHM_SIZE=16g need to be set beforehand. Here is the example script for setting up an interactive environment to test out the code.

export LSF_DOCKER_SHM_SIZE=16g 
bsub -Is -M 32GB -q general-interactive -R 'gpuhost' -R  'rusage[mem=32GB]'  -gpu "num=1:gmodel=TeslaV100_SXM2_32GB" -a 'docker(pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9)' /bin/bash

Multi-GPU training has not been tested.

Implementation

We implemented foveation in two ways: one approximating our perception, the other approximating the cortical representation of the image. In our perception, we can see with highest resolution at the fixation point, while the peripheral vision is blurred and less details could be recognized (Arturo; Simoncelli 2011). Moreover, when we change fixation across the image, the whole scene still feels stable without shifting. So we model this perception as a spatially varying blur of image as people classically did.

In contrast, from a neurobiological view, our visual cortex distorted the retinal input: a larger cortical area processes the input at fovea than that for periphery given the same image size. This is known as the cortical magnification. Pictorially, this is magnifying and over-representing the image around the fixation points. We model this transform with sampling the original image with a warpped grid.

These two different views of foveation (perceptual vs neurobiological) were implemented and compared as data augmentations in SimCLR.

Structure of Repo

  • Main command line interface
    • run.py Running baseline training pipeline without bio-inspired augmentations.
    • run_salcrop.py Running training pipeline with options for foveation transforms and saliency based sampling.
    • run_magnif.py Running training pipeline with options for foveation transforms and saliency based sampling.
  • data_aug\, implementation of our bio-inspired augmentations
  • posthoc\, analysis code for training result.
  • scripts\, scripts that run experiments on cluster.

Dependency

  • pytorch. Tested with version 1.7.1-1.10.0
  • kornia pip install kornia. Tested with version 0.3.1-0.6.1.
  • FastSal, we forked and modified a few lines of original to make it compatible with current pytorch 3.9 and torchvision.

Inquiries: [email protected]

Owner
Binxu
PhD student in System Neuro @PonceLab @Harvard, using generative models, CNN and optimization to understand brain Previously: Louis Tao
Binxu
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022