PyTorch 1.0 inference in C++ on Windows10 platforms

Overview

Serving PyTorch Models in C++ on Windows10 platforms

Dynamic graph

How to use

Prepare Data

examples/data/train/

	- 0
	- 1
	  .
	  .
	  .
	- n

examples/data/test/

	- 0
	- 1
	  .
	  .
	  .
	- n

Train Model

cd examples && python train.py

Transform Model

cd examples && python transform_model.py

Test Model

cd makefile/pytorch
mkdir build && cd build && cmake -A x64 ..

or

mkdir build && cd build && cmake -G "Visual Studio 15 2017 Win64" ..

set Command Arguments -> ..\..\..\examples\checkpoint ..\..\..\examples\images
set Environment -> path=%path%;../../../thirdparty/libtorch/lib;../../../thirdparty/opencv/build/x64/vc15/bin;

Test CUDA Softmax

cd makefile/cuda
mkdir build && cd build && cmake -A x64 ..

or

mkdir build && cd build && cmake -G "Visual Studio 15 2017 Win64" ..

Inference onnx model

cd makefile/tensorRT/classification
mkdir build && cd build && cmake -A x64 ..

or

mkdir build && cd build && cmake -G "Visual Studio 15 2017 Win64" ..
set Environment -> path=%path%;../../../../thirdparty/TensorRT/lib;

Inference caffe model for faster-rcnn

cd makefile/tensorRT/detection
mkdir build && cd build && cmake -A x64 ..

or

mkdir build && cd build && cmake -G "Visual Studio 15 2017 Win64" ..
set Environment -> path=%path%;../../../../thirdparty/TensorRT/lib;

download VGG16_faster_rcnn_final.caffemodel

Thirdparty

thirdparty/
	- libtorch  
	- opencv 
	- CUDA
	- TensorRT

download thirdparty from here.

Docker

docker pull zccyman/deepframe
nvidia-docker run -it --name=mydocker zccyman/deepframe /bin/bash
cd workspace && git clone https://github.com/zccyman/pytorch-inference.git

Environment

  • Windows10
  • VS2017
  • CMake3.13
  • CUDA10.0
  • CUDNN7.3
  • Pyton3.5
  • ONNX1.1.2
  • TensorRT5.0.1
  • Pytorch1.0
  • Libtorch
  • OpenCV4.0.1

Todo List

  • train and transform pytorch model

  • multi-batch inference pytorch model in C++

  • cpu and gpu softmax

  • transform pytorch model to ONNX model, and inference onnx model using tensorRT

  • inference caffe model for faster-rcnn using tensorRT

  • build classification network

  • compress pytorch model

  • object detection pytorch inference using C++ on Window platforms

Notes

  • "torch.jit.trace" doesn’t support nn.DataParallel so far.

  • TensorRT doesn’t supports opset 7 above so far, but pyTorch ONNX exporter seems to export opset 9.

Acknowledgement

Owner
Henson
Henson
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021