SGPT: Multi-billion parameter models for semantic search

Related tags

Deep Learningsgpt
Overview

SGPT: Multi-billion parameter models for semantic search

This repository contains code, results and pre-trained models for the paper SGPT: Multi-billion parameter models for semantic search. - TODO: Link to arxiv

**************************** Updates ****************************

Quick Links

Overview

We present SGPT-CE and SGPT-BE for applying large transformer decoders as Cross-Encoders or Bi-Encoders to symmetric or asymmetric search. SGPT-CE uses log-probability extraction of pre-trained models. SGPT-BE uses position-weighted mean pooling and contrastive fine-tuning of only bias tensors (BitFit).

Feel free to open an issue should you have any questions~

Structure

.
├── biencoder  # Training & Inference of Bi-Encoders
│   ├── beir
│   │   ├── custommodels # Directory providing BEIR compatibility for asymmetric mdoels & models with special tokens
│   │   │   └── ...
│   │   ├── io_utils # Exclusively used for beir_openai_embeddings_batched_parallel.py
│   │   │   └── ...
│   │   ├── parallelizer # Exclusively used for beir_openai_embeddings_batched_parallel.py
│   │   │   └── ...
│   │   ├── beir_dense_retriever.py
│   │   ├── beir_openai_embeddings_batched_parallel.py
│   │   ├── requirements.txt
│   │   ├── *.bash # Bash scripts to run multiple experiments
│   │   └── README.md
│   ├── nli_msmarco
│   │   ├── sentence-transformers # An adapted version of sentence-transformers - Install this version for all biencoder experiments
│   │   │   └── ...
│   │   └── README.md
│   └── useb
│       ├── useb
│       │   └── ...
│       ├── *.bash # Bash scripts to run multiple experiments
│       ├── useb_dense_retriever.py
│       └── README.md
├── crossencoder  # Inference of crossencoders
│   └── beir
│       ├── *.ipynb # Notebooks explained in the README
│       └── README.md
├── other
│   ├── sgpt_graphic.png
│   └── sgpt_utils.ipynb # Code for creating the graphs in the paper & other
├── requirements.txt
└── README.md

Each data sub-directory provides its own README with an overview of its Structure, Downloads (Datasets, Models) & Commands used to produce the datasets, models & other things. Generally, you can find all models at https://huggingface.co/Muennighoff and json results in various datasets at https://www.kaggle.com/muennighoff/datasets. Model names are explained in their Huggingface READMEs. Dataset names are explained in the sub-folders of this repository.

Use SGPT with Huggingface

Below we provide python examples to use the pre-trained models for your own semantic search use case. We highly recommend replacing the model names with larger models, e.g. Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit for biencoder/symmetric. For small models, SBERT outperforms SGPT. See our paper for more information.

Biencoder

Symmetric Semantic Search
import torch
from transformers import AutoModel, AutoTokenizer
from scipy.spatial.distance import cosine

# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-125M-weightedmean-nli-bitfit")
model = AutoModel.from_pretrained("Muennighoff/SGPT-125M-weightedmean-nli-bitfit")

# Tokenize input texts
texts = [
    "deep learning",
    "artificial intelligence",
    "deep throating",
    "artificial snow",
]
batch_tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")

# Get the embeddings
with torch.no_grad():
    # Get hidden state of shape [bs, seq_len, hid_dim]
    last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state

# Get weights of shape [bs, seq_len, hid_dim]
weights = (
    torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
    .unsqueeze(0)
    .unsqueeze(-1)
    .expand(last_hidden_state.size())
    .float().to(last_hidden_state.device)
)

# Get attn mask of shape [bs, seq_len, hid_dim]
input_mask_expanded = (
    batch_tokens["attention_mask"]
    .unsqueeze(-1)
    .expand(last_hidden_state.size())
    .float()
)

# Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)

embeddings = sum_embeddings / sum_mask

# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_sim_0_1 = 1 - cosine(embeddings[0], embeddings[1])
cosine_sim_0_2 = 1 - cosine(embeddings[0], embeddings[2])
cosine_sim_0_3 = 1 - cosine(embeddings[0], embeddings[3])

print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (texts[0], texts[1], cosine_sim_0_1))
print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (texts[0], texts[2], cosine_sim_0_2))
print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (texts[0], texts[3], cosine_sim_0_3))
Asymmetric Semantic Search
import torch
from transformers import AutoModel, AutoTokenizer
from scipy.spatial.distance import cosine

# Get our models - The package will take care of downloading the models automatically
# For best performance: Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
tokenizer = AutoTokenizer.from_pretrained("Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit")
model = AutoModel.from_pretrained("Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit")

queries = [
    "I'm searching for a planet not too far from Earth.",
]

docs = [
    "Neptune is the eighth and farthest-known Solar planet from the Sun. In the Solar System, it is the fourth-largest planet by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, slightly more massive than its near-twin Uranus.",
    "TRAPPIST-1d, also designated as 2MASS J23062928-0502285 d, is a small exoplanet (about 30% the mass of the earth), which orbits on the inner edge of the habitable zone of the ultracool dwarf star TRAPPIST-1 approximately 40 light-years (12.1 parsecs, or nearly 3.7336×1014 km) away from Earth in the constellation of Aquarius.",
    "A harsh desert world orbiting twin suns in the galaxy’s Outer Rim, Tatooine is a lawless place ruled by Hutt gangsters. Many settlers scratch out a living on moisture farms, while spaceport cities such as Mos Eisley and Mos Espa serve as home base for smugglers, criminals, and other rogues.",
]

SPECB_QUE_BOS = tokenizer.encode("[", add_special_tokens=False)[0]
SPECB_QUE_EOS = tokenizer.encode("]", add_special_tokens=False)[0]

SPECB_DOC_BOS = tokenizer.encode("{", add_special_tokens=False)[0]
SPECB_DOC_EOS = tokenizer.encode("}", add_special_tokens=False)[0]


def tokenize_with_specb(texts, is_query):
    # Tokenize without padding
    batch_tokens = tokenizer(texts, padding=False, truncation=True)   
    # Add special brackets & pay attention to them
    for seq, att in zip(batch_tokens["input_ids"], batch_tokens["attention_mask"]):
        if is_query:
            seq.insert(0, SPECB_QUE_BOS)
            seq.append(SPECB_QUE_EOS)
        else:
            seq.insert(0, SPECB_DOC_BOS)
            seq.append(SPECB_DOC_EOS)
        att.insert(0, 1)
        att.append(1)
    # Add padding
    batch_tokens = tokenizer.pad(batch_tokens, padding=True, return_tensors="pt")
    return batch_tokens

def get_weightedmean_embedding(batch_tokens, model):
    # Get the embeddings
    with torch.no_grad():
        # Get hidden state of shape [bs, seq_len, hid_dim]
        last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state

    # Get weights of shape [bs, seq_len, hid_dim]
    weights = (
        torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
        .unsqueeze(0)
        .unsqueeze(-1)
        .expand(last_hidden_state.size())
        .float().to(last_hidden_state.device)
    )

    # Get attn mask of shape [bs, seq_len, hid_dim]
    input_mask_expanded = (
        batch_tokens["attention_mask"]
        .unsqueeze(-1)
        .expand(last_hidden_state.size())
        .float()
    )

    # Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim
    sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
    sum_mask = torch.sum(input_mask_expanded * weights, dim=1)

    embeddings = sum_embeddings / sum_mask

    return embeddings


query_embeddings = get_weightedmean_embedding(tokenize_with_specb(queries, is_query=True), model)
doc_embeddings = get_weightedmean_embedding(tokenize_with_specb(docs, is_query=False), model)

# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_sim_0_1 = 1 - cosine(query_embeddings[0], doc_embeddings[0])
cosine_sim_0_2 = 1 - cosine(query_embeddings[0], doc_embeddings[1])
cosine_sim_0_3 = 1 - cosine(query_embeddings[0], doc_embeddings[2])

print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (queries[0], docs[0][:20] + "...", cosine_sim_0_1))
print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (queries[0], docs[1][:20] + "...", cosine_sim_0_2))
print("Cosine similarity between \"%s\" and \"%s\" is: %.3f" % (queries[0], docs[2][:20] + "...", cosine_sim_0_3))

Crossencoder

Asymmetric Semantic Search
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from scipy.spatial.distance import cosine

# Get models - The package will take care of downloading the models automatically
# For best performance: EleutherAI/gpt-j-6B
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")

prompt = 'Documents are searched to find matches with the same content.\nThe document "{}" is a good search result for "'

queries = [
    "I'm searching for a planet not too far from Earth.",
]

docs = [
    "Neptune is the eighth and farthest-known Solar planet from the Sun. In the Solar System, it is the fourth-largest planet by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, slightly more massive than its near-twin Uranus.",
    "TRAPPIST-1d, also designated as 2MASS J23062928-0502285 d, is a small exoplanet (about 30% the mass of the earth), which orbits on the inner edge of the habitable zone of the ultracool dwarf star TRAPPIST-1 approximately 40 light-years (12.1 parsecs, or nearly 3.7336×1014 km) away from Earth in the constellation of Aquarius.",
    "A harsh desert world orbiting twin suns in the galaxy’s Outer Rim, Tatooine is a lawless place ruled by Hutt gangsters. Many settlers scratch out a living on moisture farms, while spaceport cities such as Mos Eisley and Mos Espa serve as home base for smugglers, criminals, and other rogues.",
]

for query in queries:
    print(f"Query: {query}")
    for doc in docs:
        context = prompt.format(doc)

        context_enc = tokenizer.encode(context, add_special_tokens=False)
        continuation_enc = tokenizer.encode(query, add_special_tokens=False)
        # Slice off the last token, as we take its probability from the one before
        model_input = torch.tensor(context_enc+continuation_enc[:-1])
        continuation_len = len(continuation_enc)
        input_len, = model_input.shape

        # [seq_len] -> [seq_len, vocab]
        logprobs = torch.nn.functional.log_softmax(model(model_input)[0], dim=-1).cpu()
        # [seq_len, vocab] -> [continuation_len, vocab]
        logprobs = logprobs[input_len-continuation_len:]
        # Gather the log probabilities of the continuation tokens -> [continuation_len]
        logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
        score = torch.sum(logprobs)
        # The higher (closer to 0), the better
        print(f"Document: {doc[:20] + '...'} Score: {score}")
Symmetric Semantic Search

You can use the same code as in the above CE-Asym section but change the prompt. Feel free to share prompts that work well :)

Acknowledgements

We thank XYZ for insightful discussions and valuable feedback throughout the project. This work has been supported by OpenAI under the academic access program. This work would not have been possible without:

Citation

Feel free to cite our paper if SGPT is helpful to you :)

@inproceedings{,
   title={{SGPT}: Multi-billion parameter models for semantic search},
   author={XXX},
   year={2022}
}
Owner
Niklas Muennighoff
Niklas Muennighoff
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022