PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

Overview

PFENet

This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Get Started

Environment

  • torch==1.4.0 (torch version >= 1.0.1.post2 should be okay to run this repo)
  • numpy==1.18.4
  • tensorboardX==1.8
  • cv2==4.2.0

Datasets and Data Preparation

Please download the following datasets:

  • PASCAL-5i is based on the PASCAL VOC 2012 and SBD where the val images should be excluded from the list of training samples.

  • COCO 2014.

This code reads data from .txt files where each line contains the paths for image and the correcponding label respectively. Image and label paths are seperated by a space. Example is as follows:

image_path_1 label_path_1
image_path_2 label_path_2
image_path_3 label_path_3
...
image_path_n label_path_n

Then update the train/val/test list paths in the config files.

[Update] We have uploaded the lists we use in our paper.

  • The train/val lists for COCO contain 82081 and 40137 images respectively. They are the default train/val splits of COCO.
  • The train/val lists for PASCAL5i contain 5953 and 1449 images respectively. The train list should be voc_sbd_merge_noduplicate.txt and the val list is the original val list of pascal voc (val.txt).
To get voc_sbd_merge_noduplicate.txt:
  • We first merge the original VOC (voc_original_train.txt) and SBD (sbd_data.txt) training data.
  • [Important] sbd_data.txt does not overlap with the PASCALVOC 2012 validation data.
  • The merged list (voc_sbd_merge.txt) is then processed by the script (duplicate_removal.py) to remove the duplicate images and labels.

Run Demo / Test with Pretrained Models

  • Please download the pretrained models.

  • We provide 8 pre-trained models: 4 ResNet-50 based models for PASCAL-5i and 4 VGG-16 based models for COCO.

  • Update the config file by speficifying the target split and path (weights) for loading the checkpoint.

  • Execute mkdir initmodel at the root directory.

  • Download the ImageNet pretrained backbones and put them into the initmodel directory.

  • Then execute the command:

    sh test.sh {*dataset*} {*model_config*}

Example: Test PFENet with ResNet50 on the split 0 of PASCAL-5i:

sh test.sh pascal split0_resnet50

Train

Execute this command at the root directory:

sh train.sh {*dataset*} {*model_config*}

Related Repositories

This project is built upon a very early version of SemSeg: https://github.com/hszhao/semseg.

Other projects in few-shot segmentation:

Many thanks to their greak work!

Citation

If you find this project useful, please consider citing:

@article{tian2020pfenet,
  title={Prior Guided Feature Enrichment Network for Few-Shot Segmentation},
  author={Tian, Zhuotao and Zhao, Hengshuang and Shu, Michelle and Yang, Zhicheng and Li, Ruiyu and Jia, Jiaya},
  journal={TPAMI},
  year={2020}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022