Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

Overview

ApproxMVBB

C++ Deps System

Status

Build UnitTests
Build Status Build Status

Homepage


Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

Computing the minimal volume oriented bounding box for a given point cloud in 3D is a hard problem in computer science. Exact algorithms are known and of cubic order in the number of points in 3D. A faster exact algorithm is currently not know. However, for lots of applications an approximation of the minimum volume oriented bounding box is acceptable and already accurate enough. This project was developed for research in Granular Rigidbody Dynamics. This small standard compliant C++11 library can either be built into a shared object library or directly be included in an existing C++ project.

I am not especially proud of the underlying code as it was written years ago, nevertheless consider PR for refactoring and clean ups are very welcome!

This library includes code for :

  • computing an approximation of an oriented minimal volume box (multithreading support: OpenMP),
  • computing the convex hull of a point cloud in 2d,
  • computing the minimal area rectangle of a 2d point cloud,
  • 2d projections of point clouds,
  • fast building a kD-Tree (n-dimensional, templated) with sophisticated splitting techniques which optimizes a quality criteria during the splitting process,
  • computing the k-nearest neighbors to a given point (kNN search) via kd-Tree.
  • fast statistical outlier filtering of point clouds via (nearest neighbor search, kD-Tree).


Installation & Dependencies

To build the library, the tests and the example you need the build tool cmake. This library has these light-weight required dependencies:

  • Eigen at least version 3.
    • With homebrew or linuxbrew: brew install eigen3
  • meta
    • Install optional: Gets downloaded and used during build.

and theses optional dependecies:

  • pugixml
    • With homebrew or linuxbrew: brew install pugixml
    • install with #define PUGIXML_HAS_LONG_LONG enabled in pugiconfig.hpp.
    • only needed if cmake variable ApproxMVBB_XML_SUPPORT=ON (default=OFF).
  • python3 only needed for visualization purposes.

Download these and install it on your system.

Download the latest ApproxMVBB code:

    git clone https://github.com/gabyx/ApproxMVBB.git ApproxMVBB

Make a build directory and navigate to it:

    mkdir Build
    cd Build

Invoke cmake in the Build directory:

    cmake ../ApproxMVBB

The cmake script tries to find Eigen,meta and pugixml If you installed these in a system wide folder (e.g /usr/local/) this should succeed without any problems. In the CMakeCache.txt file (or over the console by -D<variable>=ON) you can specify what you want to build, the following options are availabe:

  • ApproxMVBB_BUILD_LIBRARY,
  • ApproxMVBB_BUILD_TESTS
  • ApproxMVBB_BUILD_EXAMPLE
  • ApproxMVBB_BUILD_BENCHMARKS
  • etc. See the marked red options after configuring in cmake-gui.

To install the library and the header files at a specific location /usr/local/ run cmake with:

    cmake -DCMAKE_INSTALL_PREFIX="/usr/local/" ../ApproxMVBB

Finally, build and install the project:

    make all
    make install

By default the multithreading support is enabled if OpenMP is found! (see Multithreading Support) To build in parallel use the -jN flag in the make command, where Ndenotes the number of parallel threads to use, or use the Ninja Generator which already uses maximum threads your system offers.

CMake FindScripts The installation installs also scripts approxmvbb-config.cmake and approxmvbb-config-version.cmake into the lib/cmake folder. To include the library in another project the only thing you need to add in your cmake script is

    find_package(ApproxMVBB [version] [COMPONENTS [SUPPORT_KDTREE] [SUPPORT_XML] ] [Required] )

which defines the following targets if ApproxMVBB has been found successfully:

    ApproxMVBB::Core            # Main target to link with!
    ApproxMVBB::KdTreeSupport   # Optional target for KdTree support to link with (only available if installed with this supported!)
    ApproxMVBB::XMLSupport      # Optional target for XML support to link with (only available if installed with this supported!)

The components SUPPORT_KDTREE additionally loads the dependency meta for the KdTree.hpp header and SUPPORT_XML loads pugixml for the KdTreeXml.hpp header.

If you installed the library into non-system generic location you can set the cmake variable $ApproxMVBB_DIR before invoking the find_library command:

    set(ApproxMVBB_DIR "path/to/installation/lib/cmake")
    find_package(ApproxMVBB [version] [Required] )

See the example example/libraryUsage which should be configured as a separate build, and the example example/kdTreeFiltering for more information on how to set up the dependencies!


Supported Platforms

The code has been tested on Linux and OS X with compilers clang and gcc. It should work for Windows as well, but has not been tested properly. Under Visual Studio 15 it seems to build.


Example Usage: Approximation MVBB

Please see the example/approxMVBB/main.cpp in the source directory. Given a point cloud with n=10000 points sampled in the unit cube in 3D we compute an approximation of the minimum volume bounding volume by the following calls:

    #include <iostream>
    #include "ApproxMVBB/ComputeApproxMVBB.hpp"

    int  main(int argc, char** argv)
    {
          ApproxMVBB::Matrix3Dyn points(3,10000);
          points.setRandom();
          ApproxMVBB::OOBB oobb = ApproxMVBB::approximateMVBB(points,0.001,500,5,0,5);
          oobb.expandToMinExtentRelative(0.1);
          return 0;
    }

The returned object oriented bounding box oobb contains the lower oobb.m_minPoint and upper point oobb.m_maxPoint expressed in the coordinate frame K of the bounding box. The bounding box also stores the rotation matrix from the world frame to the object frame K as a quaternion oobb.m_q_KI . The rotation matrix R_KI from frame I to frame K can be obtained by oobb.m_q_KI.matrix() (see Eigen::Quaternion). This rotation matrix R_KI corresponds to a coordinate transformation A_IK which transforms coordinates from frame K to coordinates in frame I. Thereforce, to get the lower point expressed in the coordinate frame I this yields:

    ApproxMVBB::Vector3 p = oobb.m_q_KI * oobb.m_minPoint  // A_IK * oobb.m_minPoint

Degenerate OOBB: The returned bounding box might have a degenerated extent in some axis directions depending on the input points (e.g. 3 points defines a plane which is the minimal oriented bounding box with zero volume). The function oobb.expandToMinExtentRelative(0.1); is a post processing function to enlarge the bounding box by a certain percentage of the largest extent (if existing, otherwise a default value is used).

Points Outside of the final OOBB: Because the algorithm works internally with a sample of the point cloud, the resulting OOBB might not contain all points of the original point cloud! To compensate for this an additional loop is required:

    ApproxMVBB::Matrix33 A_KI = oobb.m_q_KI.matrix().transpose();
    auto size = points.cols();
    for( unsigned int i=0;  i<size; ++i ) {
        oobb.unite(A_KI*points.col(i));
    }

Function Parameters & How It Works: The most important function:

    ApproxMVBB::approximateMVBB(pts,
                                epsilon,
                                pointSamples,
                                gridSize,
                                mvbbDiamOptLoops,
                                mvbbGridSearchOptLoops)

computes an approximation of the minimal volume bounding box in the following steps:

  1. An approximation of the diameter (direction which realizes the diameter: z ) of the points pts is computed. The value epsilon is the absolute tolerance for the approximation of the diameter and has the same units as the points pts (in the example 0.001 meter)
  2. The points are projected into the plane perpendicular to the direction z
  3. An approximation of the diameter of the projected points in 2D is computed (direction x )
  4. The initial approximate bounding box A is computed in the orthogonal frame [x,y,z]
  5. A first optional optimization loop is performed (parameter mvbbDiamOptLoops specifies how many loops) by computing the minimal volume bounding box over a direction t where the direction t is choosen sequentially from the current optimal bounding box solution. The algorithm starts with the directions of the box A. This optimization works with all points in pts and might use a lot of time
  6. The initial bounding box A is used as a tight fit around the points pts to compute a representative sample RS of the point cloud. The value pointSamples defines how many points are used for the exhaustive grid search procedure in the next step
  7. An exhaustive grid search (value gridSize specifies the x,y,z dimension of the grid defined by the bounding box A) is performed. This search is a simple loop over all grid directions (see Gill Barequet, and Sariel Har-Peled [1]) to find a even smaller bounding box. For each grid direction g the minimal bounding box of the projected points in direction g is computed. This consists of finding the minimal rectangle (axis u and v in world frame) of the projected point cloud in the plane perpendicular to direction g. The minimal bounding box G in direction g can be computed from the basis (u,v,g) and is a candidate for the overall minimization problem. Each found bounding box candidate G and its directions (u,v,g) can be used as a starting point for a second optional optimization loop (parameter mvbbGridSearchOptLoops, same algorithm as in step 5 but with less points, namely RS ).
  8. The final approximation for the minimal volume bounding box (minimal volume over all computed candidates) is returned. 💩

Example Usage: Generating a KdTree and Outlier Filtering

The library includes a fast KdTree implementation (which is not claimed to be ultimativly fast and absolutely memory efficient, but was written to fulfill this aspects to a certain level, real benchmarks still need to be done, the implementation can really well compete with famous implementations such as PCL(FLANN),ANN, and CGAL ) The KdTree splitting heuristic implements an extendable sophisticated splitting optimization which in the most elaborate, performance worst case consists of searching for the best split between the splitting heuristics MIDPOINT , MEDIAN and GEOMETRIC_MEAN by evaluating a user-provided quality evaluator. The simple standard quality evaluator is the LinearQualityEvaluator which computes the split quality by a weighted linear combination of the quantities splitRatio , pointRatio, minMaxExtentRatio.

Outlier filtering is done with the k-nearest neighbor search algorithm (similar to the PCL library but faster, and with user defined precision) and works roughly as the following: The algorithm finds for each point p in the point cloud k nearest neighbors and averages their distance (distance functor) to the point p to obtain a mean distance distance for this particular point. All nearest mean distances for all points give a histogram with a sample mean mean and sample standard deviation stdDev. All points which have a mean nearest neighbor distance greater or equal to mean + stdDevMult * stdDev are classified as outlier points.

Look at the examples in examples/kdTreeFiltering which produced the following pictures with the provided visualization notebook examples/kdTreeFiltering/python/VisualizeKdTree.ipynb.

Function Parameters & How It Works To come


Building and Visualizing the Tests

Building and installing the basic tests is done by:

    cd ApproxMVBB
    git submodule init
    git submodule update
    cd ../Build
    make build_and_test

**Note that if the tests fail, submit a new issue and report which test failed. The results can still be visualized and should be correct. **

Note: To run the test in high-performance mode (needs lots of ram), which tests also points clouds of 140 million points and some polygonal statue lucy.txt successfully you need to set the cmake variable ApproxMVBB_TESTS_HIGH_PERFORMANCE to ON and additionally initialize the submodule additional and unzip the files:

     cd ApproxMVBB
     git submodule init
     git submodule update
     cd additional/tests/files; cat Lucy* | tar xz

and rebuild the tests. (this will copy the additional files next to the executable)

Executing the test application cd tests; ./ApproxMVBBTests will then run the following tests:

  1. Testing the ConvexHull2D for several point clouds in 2D
  2. Minimal area rectangle tests for several point clouds in 2D
  3. Testing the diameter computation and calculation of the initial bounding box A (see [section](Function Parameters & How It Works)) for point clouds in 3D
  4. Testing the full optimization pipeline to generate an approximation of the minimal volume bounding box

The output can be visualized with the ipython notebook /tests/python/PlotTestResults.ipynb:

    cd Build/tests
    ipython noteboook


Benchmark

Here are some short benchmarks (single core) from the tests folder:

Point Cloud # Points ~ CPU Time approximateMVBB
Standford Bunny 35'945 0.91 s
Standford Lucy 14'027'872 1.19 s
Unit Cube 140'000'000 7.0 s

approximateMVBB runs approximateMVBBDiam and performs a grid search afterwards (here 5x5x5=25 directions with 5 optimization runs for each) It seems to take a long time for 140 million points. The most inefficient task is to get a good initial bounding box. This takes the most time as diameter computations are performed in 3d and then all points are projected in the found diameter direction in 3d and another diameter in the projected plane in 2d is computed. Afterwards the point cloud is sampled (not just random points, its done with a grid) and convex hull, minimal rectangle computations are performed over the grid directions. These algorithms could be made faster by exploiting the following things:

  • Use an axis aligned bounding box as the initial bounding box for the grid search (not implemented yet)
  • Parallelism for the projection -> (CUDA, threads)

Multithreading Support

You can build the library with OpenMP (by default enabled) You can set the cmake cache variables ApproxMVBB_OPENMP_USE_OPENMP=On which will further enable ApproxMVBB_OPENMP_USE_NTHREADS=On/Off. The variable ApproxMVBB_OPENMP_USE_NTHREADS toogles the number of threads to use. If Off, the number of threads is determined at runtime (default).

If you use clang, make sure you have the OpenMP enabled clang! GCC already supports OpenMP.


References

The main articles this code is based on:

@Article{malandain2002,
Author = {Gr'egoire Malandain and Jean-Daniel Boissonnat},
Journal = {International Journal of Computational Geometry & Applications},
Month = {December},
Number = {6},
Pages = {489 - 510},
Timestamp = {2015.09.02},
Title = {Computing the Diameter of a Point Set},
Volume = {12},
Year = {2002}}

and

@inproceedings{barequet2001,
Author = {Gill Barequet and Sariel Har-peled},
Booktitle = {In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms},
Pages = {38--91},
Timestamp = {2015.09.02},
Title = {Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions},
Year = {2001}}

Optimizations for future work:

@Article{chang2011,
Acmid = {2019641},
Address = {New York, NY, USA},
Articleno = {122},
Author = {Chang, Chia-Tche and Gorissen, Bastien and Melchior, Samuel},
Doi = {10.1145/2019627.2019641},
Issn = {0730-0301},
Issue_Date = {October 2011},
Journal = {ACM Trans. Graph.},
Keywords = {Computational geometry, bounding box, manifolds, optimization},
Month = oct,
Number = {5},
Numpages = {16},
Pages = {122:1--122:16},
Publisher = {ACM},
Timestamp = {2015.09.03},
Title = {Fast Oriented Bounding Box Optimization on the Rotation Group {$SO(3,\mathbb{R})$}},
Url = {http://doi.acm.org/10.1145/2019627.2019641},
Volume = {30},
Year = {2011},
Bdsk-Url-1 = {http://doi.acm.org/10.1145/2019627.2019641},
Bdsk-Url-2 = {http://dx.doi.org/10.1145/2019627.2019641}}

Licensing

This source code is released under MPL 2.0.


Author and Acknowledgements

ApproxMVBB was written by Gabriel Nützi, with source code from Grégoire Malandain & Jean-Daniel Boissonnat for the approximation of the diameter of a point cloud. I was inspired by the work and algorithms of Gill Barequet & Sariel Har-Peled for computing a minimal volume bounding box. Additionally, the geometric predicates (orient2d) used in the convex hull algorithm (graham scan) have been taken from the fine work of Jonathan Richard Shewchuk. Special thanks go to my significant other which always had an ear during breakfast for this little project 😘

Owner
Gabriel Nützi
with a degree in permanent-head-damage (phd)
Gabriel Nützi
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022