PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

Overview

EGVSR-PyTorch

GitHub | Gitee码云


VSR x4: EGVSR; Upscale x4: Bicubic Interpolation

Contents

Introduction

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the official implementation ESPCN and TecoGAN for more information.

Features

  • Unified Framework: This repo provides a unified framework for various state-of-the-art DL-based VSR methods, such as VESPCN, SOFVSR, FRVSR, TecoGAN and our EGVSR.
  • Multiple Test Datasets: This repo offers three types of video datasets for testing, i.e., standard test dataset -- Vid4, Tos3 used in TecoGAN and our new dataset -- Gvt72 (selected from Vimeo site and including more scenes).
  • Better Performance: This repo provides model with faster inferencing speed and better overall performance than prior methods. See more details in Benchmarks section.

Dependencies

  • Ubuntu >= 16.04
  • NVIDIA GPU + CUDA & CUDNN
  • Python 3
  • PyTorch >= 1.0.0
  • Python packages: numpy, matplotlib, opencv-python, pyyaml, lmdb (requirements.txt & req.txt)
  • (Optional) Matlab >= R2016b

Datasets

A. Training Dataset

Download the official training dataset based on the instructions in TecoGAN-TensorFlow, rename to VimeoTecoGAN and then place under ./data.

B. Testing Datasets

  • Vid4 -- Four video sequences: city, calendar, foliage and walk;
  • Tos3 -- Three video sequences: bridge, face and room;
  • Gvt72 -- Generic VSR Test Dataset: 72 video sequences (including natural scenery, culture scenery, streetscape scene, life record, sports photography, etc, as shown below)

You can get them at 百度网盘 (提取码:8tqc) and put them into 📁 Datasets. The following shows the structure of the above three datasets.

data
  ├─ Vid4
    ├─ GT                # Ground-Truth (GT) video sequences
      └─ calendar
        ├─ 0001.png
        └─ ...
    ├─ Gaussian4xLR      # Low Resolution (LR) video sequences in gaussian degradation and x4 down-sampling
      └─ calendar
        ├─ 0001.png
        └─ ...
  └─ ToS3
    ├─ GT
    └─ Gaussian4xLR
  └─ Gvt72
    ├─ GT
    └─ Gaussian4xLR

Benchmarks

Experimental Environment

Version Info.
System Ubuntu 18.04.5 LTS X86_64
CPU Intel i9-9900 3.10GHz
GPU Nvidia RTX 2080Ti 11GB GDDR6
Memory DDR4 2666 32GB×2

A. Test on Vid4 Dataset


1.LR 2.VESPCN 3.SOFVSR 4.DUF 5.Ours:EGVSR 6.GT
Objective metrics for visual quality evaluation[1]

B. Test on Tos3 Dataset


1.VESPCN 2.SOFVSR 3. FRVSR 4.TecoGAN 5.Ours:EGVSR 6.GT

C. Test on Gvt72 Dataset


1.LR 2.VESPCN 3.SOFVSR 4.DUF 5.Ours:EGVSR 6.GT
Objective metrics for visual quality and temporal coherence evaluation[1]

D. Optical-Flow based Motion Compensation

Please refer to FLOW_walk, FLOW_foliage and FLOW_city.

E. Comprehensive Performance


Comparison of various SOTA VSR model on video quality score and speed performance[3]

[1] ⬇️ :smaller value for better performance, ⬆️ : on the contrary; Red: stands for Top1, Blue: Top2. [2] The calculation formula of video quality score considering both spatial and temporal domain, using lambda1=lambda2=lambda3=1/3. [3] FLOPs & speed are computed on RGB with resolution 960x540 to 3840x2160 (4K) on NVIDIA GeForce GTX 2080Ti GPU.

License & Citations

This EGVSR project is released under the MIT license. See more details in LICENSE. The provided implementation is strictly for academic purposes only. If EGVSR helps your research or work, please consider citing EGVSR. The following is a BibTeX reference:

@misc{thmen2021egvsr,
  author =       {Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang and He Li},
  title =        {EGVSR},
  howpublished = {\url{https://github.com/Thmen/EGVSR}},
  year =         {2021}
}

Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang and He Li. EGVSR. https://github.com/Thmen/EGVSR, 2021.

Acknowledgements

This code is built on the following projects. We thank the authors for sharing their codes.

  1. ESPCN
  2. BasicSR
  3. VideoSuperResolution
  4. TecoGAN-PyTorch
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021