PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

Overview

EGVSR-PyTorch

GitHub | Gitee码云


VSR x4: EGVSR; Upscale x4: Bicubic Interpolation

Contents

Introduction

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the official implementation ESPCN and TecoGAN for more information.

Features

  • Unified Framework: This repo provides a unified framework for various state-of-the-art DL-based VSR methods, such as VESPCN, SOFVSR, FRVSR, TecoGAN and our EGVSR.
  • Multiple Test Datasets: This repo offers three types of video datasets for testing, i.e., standard test dataset -- Vid4, Tos3 used in TecoGAN and our new dataset -- Gvt72 (selected from Vimeo site and including more scenes).
  • Better Performance: This repo provides model with faster inferencing speed and better overall performance than prior methods. See more details in Benchmarks section.

Dependencies

  • Ubuntu >= 16.04
  • NVIDIA GPU + CUDA & CUDNN
  • Python 3
  • PyTorch >= 1.0.0
  • Python packages: numpy, matplotlib, opencv-python, pyyaml, lmdb (requirements.txt & req.txt)
  • (Optional) Matlab >= R2016b

Datasets

A. Training Dataset

Download the official training dataset based on the instructions in TecoGAN-TensorFlow, rename to VimeoTecoGAN and then place under ./data.

B. Testing Datasets

  • Vid4 -- Four video sequences: city, calendar, foliage and walk;
  • Tos3 -- Three video sequences: bridge, face and room;
  • Gvt72 -- Generic VSR Test Dataset: 72 video sequences (including natural scenery, culture scenery, streetscape scene, life record, sports photography, etc, as shown below)

You can get them at 百度网盘 (提取码:8tqc) and put them into 📁 Datasets. The following shows the structure of the above three datasets.

data
  ├─ Vid4
    ├─ GT                # Ground-Truth (GT) video sequences
      └─ calendar
        ├─ 0001.png
        └─ ...
    ├─ Gaussian4xLR      # Low Resolution (LR) video sequences in gaussian degradation and x4 down-sampling
      └─ calendar
        ├─ 0001.png
        └─ ...
  └─ ToS3
    ├─ GT
    └─ Gaussian4xLR
  └─ Gvt72
    ├─ GT
    └─ Gaussian4xLR

Benchmarks

Experimental Environment

Version Info.
System Ubuntu 18.04.5 LTS X86_64
CPU Intel i9-9900 3.10GHz
GPU Nvidia RTX 2080Ti 11GB GDDR6
Memory DDR4 2666 32GB×2

A. Test on Vid4 Dataset


1.LR 2.VESPCN 3.SOFVSR 4.DUF 5.Ours:EGVSR 6.GT
Objective metrics for visual quality evaluation[1]

B. Test on Tos3 Dataset


1.VESPCN 2.SOFVSR 3. FRVSR 4.TecoGAN 5.Ours:EGVSR 6.GT

C. Test on Gvt72 Dataset


1.LR 2.VESPCN 3.SOFVSR 4.DUF 5.Ours:EGVSR 6.GT
Objective metrics for visual quality and temporal coherence evaluation[1]

D. Optical-Flow based Motion Compensation

Please refer to FLOW_walk, FLOW_foliage and FLOW_city.

E. Comprehensive Performance


Comparison of various SOTA VSR model on video quality score and speed performance[3]

[1] ⬇️ :smaller value for better performance, ⬆️ : on the contrary; Red: stands for Top1, Blue: Top2. [2] The calculation formula of video quality score considering both spatial and temporal domain, using lambda1=lambda2=lambda3=1/3. [3] FLOPs & speed are computed on RGB with resolution 960x540 to 3840x2160 (4K) on NVIDIA GeForce GTX 2080Ti GPU.

License & Citations

This EGVSR project is released under the MIT license. See more details in LICENSE. The provided implementation is strictly for academic purposes only. If EGVSR helps your research or work, please consider citing EGVSR. The following is a BibTeX reference:

@misc{thmen2021egvsr,
  author =       {Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang and He Li},
  title =        {EGVSR},
  howpublished = {\url{https://github.com/Thmen/EGVSR}},
  year =         {2021}
}

Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang and He Li. EGVSR. https://github.com/Thmen/EGVSR, 2021.

Acknowledgements

This code is built on the following projects. We thank the authors for sharing their codes.

  1. ESPCN
  2. BasicSR
  3. VideoSuperResolution
  4. TecoGAN-PyTorch
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022