An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

Overview

Automatic Augmentation Zoo

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

We will post updates regularly so you can star 🌟 or watch 👓 this repository for the latest.

Introduction

This repository provides the official implementations of OHL and AWS, and will also integrate some other popular auto-aug methods (like Auto Augment, Fast AutoAugment and Adversarial autoaugment) in pure PyTorch. We use torch.distributed to conduct the distributed training. The model checkpoints will be upload to GoogleDrive or OneDrive soon.

Dependencies

It would be recommended to conduct experiments under:

  • python 3.6.3
  • pytorch 1.1.0, torchvision 0.2.1

All the dependencies are listed in requirements.txt. You may use commands like pip install -r requirements.txt to install them.

Running

  1. Create the directory for your experiment.
cd /path/to/this/repo
mkdir -p exp/aws_search1
  1. Copy configurations into your workspace.
cp scripts/search.sh configs/aws.yaml exp/aws_search1
cd exp/aws_search1
  1. Start searching
# sh ./search.sh  
sh ./search.sh Test 8

An instance of yaml:

version: 0.1.0

dist:
    type: torch
    kwargs:
        node0_addr: auto
        node0_port: auto
        mp_start_method: fork   # fork or spawn; spawn would be too slow for Dalaloader

pipeline:
    type: aws
    common_kwargs:
        dist_training: &dist_training False
#        job_name:         [will be assigned in runtime]
#        exp_root:         [will be assigned in runtime]
#        meta_tb_lg_root:  [will be assigned in runtime]

        data:
            type: cifar100               # case-insensitive (will be converted to lower case in runtime)
#            dataset_root: /path/to/dataset/root   # default: ~/datasets/[type]
            train_set_size: 40000
            val_set_size: 10000
            batch_size: 256
            dist_training: *dist_training
            num_workers: 3
            cutout: True
            cutlen: 16

        model_grad_clip: 3.0
        model:
            type: WRN
            kwargs:
#                num_classes: [will be assigned in runtime]
                bn_mom: 0.5

        agent:
            type: ppo           # ppo or REINFORCE
            kwargs:
                initial_baseline_ratio: 0
                baseline_mom: 0.9
                clip_epsilon: 0.2
                max_training_times: 5
                early_stopping_kl: 0.002
                entropy_bonus: 0
                op_cfg:
                    type: Adam         # any type in torch.optim
                    kwargs:
#                        lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                        betas: !!python/tuple [0.5, 0.999]
                        weight_decay: 0
                sc_cfg:
                    type: Constant
                    kwargs:
                        base_lr_divisor: 8      # base_lr = warmup_lr / base_lr_divisor
                        warmup_lr: 0.1          # lr at the end of warming up
                        warmup_iters: 10      # warmup_epochs = epochs / warmup_divisor
                        iters: &finetune_lp 350
        
        criterion:
            type: LSCE
            kwargs:
                smooth_ratio: 0.05


    special_kwargs:
        pretrained_ckpt_path: ~ # /path/to/pretrained_ckpt.pth.tar
        pretrain_ep: &pretrain_ep 200
        pretrain_op: &sgd
            type: SGD       # any type in torch.optim
            kwargs:
#                lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                nesterov: True
                momentum: 0.9
                weight_decay: 0.0001
        pretrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.2          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *pretrain_ep
                min_lr: &finetune_lr 0.001

        finetuned_ckpt_path: ~  # /path/to/finetuned_ckpt.pth.tar
        finetune_lp: *finetune_lp
        finetune_ep: &finetune_ep 10
        rewarded_ep: 2
        finetune_op: *sgd
        finetune_sc:
            type: Constant
            kwargs:
                base_lr: *finetune_lr
                warmup_lr: *finetune_lr
                warmup_iters: 0
                epochs: *finetune_ep

        retrain_ep: &retrain_ep 300
        retrain_op: *sgd
        retrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.4          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *retrain_ep
                min_lr: 0

Citation

If you're going to to use this code in your research, please consider citing our papers (OHL and AWS).

@inproceedings{lin2019online,
  title={Online Hyper-parameter Learning for Auto-Augmentation Strategy},
  author={Lin, Chen and Guo, Minghao and Li, Chuming and Yuan, Xin and Wu, Wei and Yan, Junjie and Lin, Dahua and Ouyang, Wanli},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={6579--6588},
  year={2019}
}

@article{tian2020improving,
  title={Improving Auto-Augment via Augmentation-Wise Weight Sharing},
  author={Tian, Keyu and Lin, Chen and Sun, Ming and Zhou, Luping and Yan, Junjie and Ouyang, Wanli},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Contact for Issues

References & Opensources

PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022