An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

Overview

Automatic Augmentation Zoo

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

We will post updates regularly so you can star 🌟 or watch 👓 this repository for the latest.

Introduction

This repository provides the official implementations of OHL and AWS, and will also integrate some other popular auto-aug methods (like Auto Augment, Fast AutoAugment and Adversarial autoaugment) in pure PyTorch. We use torch.distributed to conduct the distributed training. The model checkpoints will be upload to GoogleDrive or OneDrive soon.

Dependencies

It would be recommended to conduct experiments under:

  • python 3.6.3
  • pytorch 1.1.0, torchvision 0.2.1

All the dependencies are listed in requirements.txt. You may use commands like pip install -r requirements.txt to install them.

Running

  1. Create the directory for your experiment.
cd /path/to/this/repo
mkdir -p exp/aws_search1
  1. Copy configurations into your workspace.
cp scripts/search.sh configs/aws.yaml exp/aws_search1
cd exp/aws_search1
  1. Start searching
# sh ./search.sh  
sh ./search.sh Test 8

An instance of yaml:

version: 0.1.0

dist:
    type: torch
    kwargs:
        node0_addr: auto
        node0_port: auto
        mp_start_method: fork   # fork or spawn; spawn would be too slow for Dalaloader

pipeline:
    type: aws
    common_kwargs:
        dist_training: &dist_training False
#        job_name:         [will be assigned in runtime]
#        exp_root:         [will be assigned in runtime]
#        meta_tb_lg_root:  [will be assigned in runtime]

        data:
            type: cifar100               # case-insensitive (will be converted to lower case in runtime)
#            dataset_root: /path/to/dataset/root   # default: ~/datasets/[type]
            train_set_size: 40000
            val_set_size: 10000
            batch_size: 256
            dist_training: *dist_training
            num_workers: 3
            cutout: True
            cutlen: 16

        model_grad_clip: 3.0
        model:
            type: WRN
            kwargs:
#                num_classes: [will be assigned in runtime]
                bn_mom: 0.5

        agent:
            type: ppo           # ppo or REINFORCE
            kwargs:
                initial_baseline_ratio: 0
                baseline_mom: 0.9
                clip_epsilon: 0.2
                max_training_times: 5
                early_stopping_kl: 0.002
                entropy_bonus: 0
                op_cfg:
                    type: Adam         # any type in torch.optim
                    kwargs:
#                        lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                        betas: !!python/tuple [0.5, 0.999]
                        weight_decay: 0
                sc_cfg:
                    type: Constant
                    kwargs:
                        base_lr_divisor: 8      # base_lr = warmup_lr / base_lr_divisor
                        warmup_lr: 0.1          # lr at the end of warming up
                        warmup_iters: 10      # warmup_epochs = epochs / warmup_divisor
                        iters: &finetune_lp 350
        
        criterion:
            type: LSCE
            kwargs:
                smooth_ratio: 0.05


    special_kwargs:
        pretrained_ckpt_path: ~ # /path/to/pretrained_ckpt.pth.tar
        pretrain_ep: &pretrain_ep 200
        pretrain_op: &sgd
            type: SGD       # any type in torch.optim
            kwargs:
#                lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                nesterov: True
                momentum: 0.9
                weight_decay: 0.0001
        pretrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.2          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *pretrain_ep
                min_lr: &finetune_lr 0.001

        finetuned_ckpt_path: ~  # /path/to/finetuned_ckpt.pth.tar
        finetune_lp: *finetune_lp
        finetune_ep: &finetune_ep 10
        rewarded_ep: 2
        finetune_op: *sgd
        finetune_sc:
            type: Constant
            kwargs:
                base_lr: *finetune_lr
                warmup_lr: *finetune_lr
                warmup_iters: 0
                epochs: *finetune_ep

        retrain_ep: &retrain_ep 300
        retrain_op: *sgd
        retrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.4          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *retrain_ep
                min_lr: 0

Citation

If you're going to to use this code in your research, please consider citing our papers (OHL and AWS).

@inproceedings{lin2019online,
  title={Online Hyper-parameter Learning for Auto-Augmentation Strategy},
  author={Lin, Chen and Guo, Minghao and Li, Chuming and Yuan, Xin and Wu, Wei and Yan, Junjie and Lin, Dahua and Ouyang, Wanli},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={6579--6588},
  year={2019}
}

@article{tian2020improving,
  title={Improving Auto-Augment via Augmentation-Wise Weight Sharing},
  author={Tian, Keyu and Lin, Chen and Sun, Ming and Zhou, Luping and Yan, Junjie and Ouyang, Wanli},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Contact for Issues

References & Opensources

This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022