A simple interface for editing natural photos with generative neural networks.

Overview

Neural Photo Editor

A simple interface for editing natural photos with generative neural networks.

GUI1 GUI2 GUI3

This repository contains code for the paper "Neural Photo Editing with Introspective Adversarial Networks," and the Associated Video.

Installation

To run the Neural Photo Editor, you will need:

  • Python, likely version 2.7. You may be able to use early versions of Python2, but I'm pretty sure there's some incompatibilities with Python3 in here.
  • Theano, development version.
  • lasagne, development version.
  • I highly recommend cuDNN as speed is key, but it is not a dependency.
  • numpy, scipy, PIL, Tkinter and tkColorChooser, but it is likely that your python distribution already has those.

Running the NPE

By default, the NPE runs on IAN_simple. This is a slimmed-down version of the IAN without MDC or RGB-Beta blocks, which runs without lag on a laptop GPU with ~1GB of memory (GT730M)

If you're on a Windows machine, you will want to create a .theanorc file and at least set the flag FLOATX=float32.

If you're on a linux machine, you can just insert THEANO_FLAGS=floatX=float32 before the command line call.

If you don't have cuDNN, simply change line 56 of the NPE.py file from dnn=True to dnn=False. Note that I presently only have the non-cuDNN option working for IAN_simple.

Then, run the command:

python NPE.py

If you wish to use a different model, simply edit the line with "config path" in the NPE.py file.

You can make use of any model with an inference mechanism (VAE or ALI-based GAN).

Commands

  • You can paint the image by picking a color and painting on the image, or paint in the latent space canvas (the red and blue tiles below the image).
  • The long horizontal slider controls the magnitude of the latent brush, and the smaller horizontal slider controls the size of both the latent and the main image brush.
  • You can select different entries from the subset of the celebA validation set (included in this repository as an .npz) by typing in a number from 0-999 in the bottom left box and hitting "infer."
  • Use the reset button to return to the ground truth image.
  • Press "Update" to update the ground-truth image and corresponding reconstruction with the current image. Use "Infer" to return to an original ground truth image from the dataset.
  • Use the sample button to generate a random latent vector and corresponding image.
  • Use the scroll wheel to lighten or darken an image patch (equivalent to using a pure white or pure black paintbrush). Note that this automatically returns you to sample mode, and may require hitting "infer" rather than "reset" to get back to photo editing.

Training an IAN on celebA

You will need Fuel along with the 64x64 version of celebA. See here for instructions on downloading and preparing it.

If you wish to train a model, the IAN.py file contains the model configuration, and the train_IAN.py file contains the training code, which can be run like this:

python train_IAN.py IAN.py

By default, this code will save (and overwrite!) the weights to a .npz file with the same name as the config.py file (i.e. "IAN.py -> IAN.npz"), and will output a jsonl log of the training with metrics recorded after every chunk.

Use the --resume=True flag when calling to resume training a model--it will automatically pick up from the most recent epoch.

Sampling the IAN

You can generate a sample and reconstruction+interpolation grid with:

python sample_IAN.py IAN.py

Note that you will need matplotlib. to do so.

Known Issues/Bugs

My MADE layer currently only accepts hidden unit sizes that are equal to the size of the latent vector, which will present itself as a BAD_PARAM error.

Since the MADE really only acts as an autoregressive randomizer I'm not too worried about this, but it does bear looking into.

I messed around with the keywords for get_model, you'll need to deal with these if you wish to run any model other than IAN_simple through the editor.

Everything is presently just dumped into a single, unorganized directory. I'll be adding folders and cleaning things up soon.

Notes

Remainder of the IAN experiments (including SVHN) coming soon.

I've integrated the plat interface which makes the NPE itself independent of framework, so you should be able to run it with Blocks, TensorFlow, PyTorch, PyCaffe, what have you, by modifying the IAN class provided in models.py.

Acknowledgments

This code contains lasagne layers and other goodies adopted from a number of places:

Owner
Andy Brock
Dimensionality Diabolist
Andy Brock
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022