v objective diffusion inference code for JAX.

Overview

v-diffusion-jax

v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman).

The models are denoising diffusion probabilistic models (https://arxiv.org/abs/2006.11239), which are trained to reverse a gradual noising process, allowing the models to generate samples from the learned data distributions starting from random noise. DDIM-style deterministic sampling (https://arxiv.org/abs/2010.02502) is also supported. The models are also trained on continuous timesteps. They use the 'v' objective from Progressive Distillation for Fast Sampling of Diffusion Models (https://openreview.net/forum?id=TIdIXIpzhoI).

Dependencies

  • JAX (installation instructions)

  • dm-haiku, einops, numpy, optax, Pillow, tqdm (install with pip install)

  • CLIP_JAX (https://github.com/kingoflolz/CLIP_JAX), and its additional pip-installable dependencies: ftfy, regex, torch, torchvision (it does not need GPU PyTorch). If you git clone --recursive this repo, it should fetch CLIP_JAX automatically.

Model checkpoints:

  • Danbooru SFW 128x128, SHA-256 8551fe663dae988e619444efd99995775c7618af2f15ab5d8caf6b123513c334

  • ImageNet 128x128, SHA-256 4fc7c817b9aaa9018c6dbcbf5cd444a42f4a01856b34c49039f57fe48e090530

  • WikiArt 128x128, SHA-256 8fbe4e0206262996ff76d3f82a18dc67d3edd28631d4725e0154b51d00b9f91a

  • WikiArt 256x256, SHA-256 ebc6e77865bbb2d91dad1a0bfb670079c4992684a0e97caa28f784924c3afd81

Sampling

Example

If the model checkpoints are stored in checkpoints/, the following will generate an image:

./clip_sample.py "a friendly robot, watercolor by James Gurney" --model wikiart_256 --seed 0

If they are somewhere else, you need to specify the path to the checkpoint with --checkpoint.

Unconditional sampling

usage: sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT] [--eta ETA] --model
                 {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                 [--steps STEPS]

--batch-size: sample this many images at a time (default 1)

--checkpoint: manually specify the model checkpoint file

--eta: set to 0 for deterministic (DDIM) sampling, 1 (the default) for stochastic (DDPM) sampling, and in between to interpolate between the two. DDIM is preferred for low numbers of timesteps.

--model: specify the model to use

-n: sample until this many images are sampled (default 1)

--seed: specify the random seed (default 0)

--steps: specify the number of diffusion timesteps (default is 1000, can lower for faster but lower quality sampling)

CLIP guided sampling

CLIP guided sampling lets you generate images with diffusion models conditional on the output matching a text prompt.

usage: clip_sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT]
                      [--clip-guidance-scale CLIP_GUIDANCE_SCALE] [--eta ETA] --model
                      {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                      [--steps STEPS]
                      prompt

clip_sample.py has the same options as sample.py and these additional ones:

prompt: the text prompt to use

--clip-guidance-scale: how strongly the result should match the text prompt (default 1000)

Owner
Katherine Crowson
AI/generative artist.
Katherine Crowson
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022