v objective diffusion inference code for JAX.

Overview

v-diffusion-jax

v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman).

The models are denoising diffusion probabilistic models (https://arxiv.org/abs/2006.11239), which are trained to reverse a gradual noising process, allowing the models to generate samples from the learned data distributions starting from random noise. DDIM-style deterministic sampling (https://arxiv.org/abs/2010.02502) is also supported. The models are also trained on continuous timesteps. They use the 'v' objective from Progressive Distillation for Fast Sampling of Diffusion Models (https://openreview.net/forum?id=TIdIXIpzhoI).

Dependencies

  • JAX (installation instructions)

  • dm-haiku, einops, numpy, optax, Pillow, tqdm (install with pip install)

  • CLIP_JAX (https://github.com/kingoflolz/CLIP_JAX), and its additional pip-installable dependencies: ftfy, regex, torch, torchvision (it does not need GPU PyTorch). If you git clone --recursive this repo, it should fetch CLIP_JAX automatically.

Model checkpoints:

  • Danbooru SFW 128x128, SHA-256 8551fe663dae988e619444efd99995775c7618af2f15ab5d8caf6b123513c334

  • ImageNet 128x128, SHA-256 4fc7c817b9aaa9018c6dbcbf5cd444a42f4a01856b34c49039f57fe48e090530

  • WikiArt 128x128, SHA-256 8fbe4e0206262996ff76d3f82a18dc67d3edd28631d4725e0154b51d00b9f91a

  • WikiArt 256x256, SHA-256 ebc6e77865bbb2d91dad1a0bfb670079c4992684a0e97caa28f784924c3afd81

Sampling

Example

If the model checkpoints are stored in checkpoints/, the following will generate an image:

./clip_sample.py "a friendly robot, watercolor by James Gurney" --model wikiart_256 --seed 0

If they are somewhere else, you need to specify the path to the checkpoint with --checkpoint.

Unconditional sampling

usage: sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT] [--eta ETA] --model
                 {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                 [--steps STEPS]

--batch-size: sample this many images at a time (default 1)

--checkpoint: manually specify the model checkpoint file

--eta: set to 0 for deterministic (DDIM) sampling, 1 (the default) for stochastic (DDPM) sampling, and in between to interpolate between the two. DDIM is preferred for low numbers of timesteps.

--model: specify the model to use

-n: sample until this many images are sampled (default 1)

--seed: specify the random seed (default 0)

--steps: specify the number of diffusion timesteps (default is 1000, can lower for faster but lower quality sampling)

CLIP guided sampling

CLIP guided sampling lets you generate images with diffusion models conditional on the output matching a text prompt.

usage: clip_sample.py [-h] [--batch-size BATCH_SIZE] [--checkpoint CHECKPOINT]
                      [--clip-guidance-scale CLIP_GUIDANCE_SCALE] [--eta ETA] --model
                      {danbooru_128,imagenet_128,wikiart_128,wikiart_256} [-n N] [--seed SEED]
                      [--steps STEPS]
                      prompt

clip_sample.py has the same options as sample.py and these additional ones:

prompt: the text prompt to use

--clip-guidance-scale: how strongly the result should match the text prompt (default 1000)

Owner
Katherine Crowson
AI/generative artist.
Katherine Crowson
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022